32立体几何中的向量方法(平行垂直、夹角距离)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《32立体几何中的向量方法(平行垂直、夹角距离)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 32 立体几何 中的 向量 方法 平行 垂直 夹角 距离 课件
- 资源描述:
-
1、3.2 3.2 立体几何中的向量方法立体几何中的向量方法-直线的方向向量与平面的法向量直线的方向向量与平面的法向量 一、点、直线、平面的位置的向量表示一、点、直线、平面的位置的向量表示点点OP基点基点空间中任意一点空间中任意一点P的的位置可用向量位置可用向量 表示表示 OP直线直线APal)(RaAP 点点A和和 不仅可以确不仅可以确定直线定直线l的位置,还可的位置,还可以具体表示出以具体表示出l上的任上的任意一点意一点P。a平面平面OabP)(RyxbyaxOP 、点点O和和 、不仅可以确定平面不仅可以确定平面 的位置,还可以具体表示出的位置,还可以具体表示出 内的任内的任意一点意一点P。a
2、b 平面平面法向量:若法向量:若 ,则,则 叫做平面叫做平面 的法向量。的法向量。aa A a过点过点A,以,以 为法向量为法向量的平面是完全确定的的平面是完全确定的a二、线线、线面、面面间的位置关系与向二、线线、线面、面面间的位置关系与向量运算的关系量运算的关系探究探究1:平行关系:平行关系设直线设直线l,m的方向向量分别为的方向向量分别为 ,平面平面 ,的法向量分别为的法向量分别为 ,abuvml/线线平行线线平行/l线面平行线面平行 /面面平行面面平行baba /0 uauavuvu /点击点击点击点击点击点击探究探究2:垂直关系:垂直关系设直线设直线l,m的方向向量分别为的方向向量分别
3、为 ,平面平面 ,的法向量分别为的法向量分别为 ,abuv ml线线垂直线线垂直 l线面垂直线面垂直 面面垂直面面垂直0 baba0 vuvuuaua /点击点击点击点击点击点击探究探究3:夹角:夹角设直线设直线l,m的方向向量分别为的方向向量分别为 ,平面平面 ,的法向量分别为的法向量分别为 ,abuv,的夹角为的夹角为 ml,线线夹角线线夹角线面夹角线面夹角面面夹角面面夹角,的的夹夹角角为为 ,l,的夹角为的夹角为 ,)20(|cosvuvu|sinuaua|cosbaba 点击点击点击点击点击点击三、简单应用三、简单应用练习练习1:设直线设直线l,m的方向向量分别的方向向量分别为为 ,根
4、据下列条件判断,根据下列条件判断l,m的位置关系:的位置关系:ab)2,3,2(),2,2,1()2(ba)6,3,6(),2,1,2()1(ba)3,0,0(),1,0,0()3(ba练习练习2:设平面设平面 ,的法向量分别的法向量分别为为 ,根据下列条件判,根据下列条件判断断 ,的位置关系:的位置关系:uv)4,4,6(),5,2,2()1(vu)4,4,2(),2,2,1()2(vu)4,1,3(),5,3,2()3(vu 四、课堂小结四、课堂小结1、点、直线、平面的位置的向量表示、点、直线、平面的位置的向量表示2、线线、线面、面面间的位置关系的、线线、线面、面面间的位置关系的向量表示向
5、量表示五、思考五、思考的一个单位法向量。求平面已知点ABCCBA),5,0,0(),0,4,0(),0,0,3(,1.),0,1,1(),1,0,1(,2的大小。所成的锐二面角的度数求这两个平面的法向量分别是若两个平面vulmabml/baba /lua/l0 uaua u v /vuvu /lamb ml0 baba l uuaua /la u v 0 vuvulamb,的夹角为的夹角为 ml,|cosbaba lamb ula,的的夹夹角角为为 ,l|)2cos(uaua ula u v,的夹角为的夹角为 ,|cosvuvu u v,的夹角为的夹角为 ,|cosvuvu 3.2 3.2 立
6、体几何中的向量方法(立体几何中的向量方法(2 2)-空间角与距离的计算举例空间角与距离的计算举例 一、复习二、讲授新课1 1、用空间向量解决立体几何问题的、用空间向量解决立体几何问题的“三步曲三步曲”。(1)建立立体图形与空间向量的联系,用空间向量表示问题)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;它们之间距离和夹角等问题;(3)把向量的运算结果)把
7、向量的运算结果“翻译翻译”成相应的几何意义。成相应的几何意义。(化为(化为向量问题)向量问题)(进行向量运算)(进行向量运算)(回到图形(回到图形问题)问题)2 2、例题、例题 例例1:如图如图1:一个结晶体的形状为四棱柱,其中,以顶点:一个结晶体的形状为四棱柱,其中,以顶点A为为端点的三条棱长都相等,且它们彼此的夹角都是端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?顶点为端点的晶体的对角线的长与棱长有什么关系?A1B1C1D1ABCD图图1解:解:如图如图1,设,设 BADADAAAB,11 6011DAABAA化为向量问
8、题化为向量问题依据向量的加法法则,依据向量的加法法则,11AAADABAC 进行向量运算进行向量运算2121)(AAADABAC )(2112122AAADAAABADABAAADAB )60cos60cos60(cos2111 6 所以所以6|1 AC回到图形问题回到图形问题这个晶体的对角线这个晶体的对角线 的长是棱长的的长是棱长的 倍。倍。1AC6思考:思考:(1)本题中四棱柱的对角线)本题中四棱柱的对角线BD1的长与棱长有什么关系?的长与棱长有什么关系?(2 2)如果一个四棱柱的各条棱长都相等,)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等并且以某一顶点为端点的
9、各棱间的夹角都等于于 ,那么有这个四棱柱的对角线的长可以那么有这个四棱柱的对角线的长可以确定棱长吗确定棱长吗?A1B1C1D1ABCD11BBBCBABD 60 120 11BCBABBABC,其其中中分析分析:分析分析:1111 DAABAABADxAAADABaAC,设设11 AAADABAC 则则由由)(211212221AAADAAABADABAAADABAC )cos3(23 222 xxa 即即ax cos631 这个四棱柱的对角线的长可以确定棱长。这个四棱柱的对角线的长可以确定棱长。(3 3)本题的晶体中相对的两个平面之间的距离是多少?(提)本题的晶体中相对的两个平面之间的距离是
10、多少?(提示:求两个平行平面的距离,通常归结为求两点间的距离)示:求两个平行平面的距离,通常归结为求两点间的距离)A1B1C1D1ABCDH 分析:分析:面面距离面面距离回归图形回归图形点面距离点面距离向量的模向量的模.11HACHAA于于点点平平面面点点作作过过 解:解:.1的的距距离离为为所所求求相相对对两两个个面面之之间间则则HA111 AAADABBADADAABA 且且由由.上上在在 ACH3 360cos211)(22 ACBCABAC.160cos60cos)(1111 BCAAABAABCABAAACAA31|cos 111 ACAAACAAACA36sin 1 ACA36si
11、n 111 ACAAAHA 所求的距离是所求的距离是。36练习:如图如图2 2,空间四边形,空间四边形OABCOABC各边以及各边以及ACAC,BOBO的长都是的长都是1 1,点,点D D,E E分别是边分别是边OAOA,BCBC的中点,连结的中点,连结DEDE,计算,计算DEDE的长。的长。OABCDE图图2 例例2 2:如图如图3 3,甲站在水库底面上的点,甲站在水库底面上的点A A处,乙站在水坝斜面上的点处,乙站在水坝斜面上的点B B处。从处。从A A,B B到直线到直线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD,CD的长为的长为
12、 ,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二面角的余弦值。labcd解:解:如图,如图,.dABcCDbBDaAC ,化为向量问题化为向量问题根据向量的加法法则根据向量的加法法则DBCDACAB 进行向量运算进行向量运算222)(DBCDACABd )(2222DBCDDBACCDACBDCDAB DBACbca 2222DBCAbca 2222于是,得于是,得22222dcbaDBCA 设向量设向量 与与 的夹角为的夹角为 ,就是库底与水坝所成的二面角。就是库底与水坝所成的二面角。CADB 因此因此.cos22222dcbaab ABCD 图图3所以所以.
13、2cos2222abdcba 回到图形问题回到图形问题库底与水坝所成二面角的余弦值为库底与水坝所成二面角的余弦值为.22222abdcba 例例2 2:如图如图3 3,甲站在水库底面上的点,甲站在水库底面上的点A A处,乙站在水坝斜面上的点处,乙站在水坝斜面上的点B B处。从处。从A A,B B到直线到直线 (库底与水坝的交线)的距离(库底与水坝的交线)的距离ACAC和和BDBD分别为分别为 和和 ,CD,CD的长为的长为 ,AB,AB的长为的长为 。求库底与水坝所成二面角的余弦值。求库底与水坝所成二面角的余弦值。labcd思考:思考:(1)本题中如果夹角)本题中如果夹角 可以测出,而可以测出
14、,而AB未知,未知,其他条件不变,可以计算出其他条件不变,可以计算出AB的长吗?的长吗?ABCD 图图322)(DBCDACAB 由由)(2222DBCDDBACCDACBDCDAB 分析:分析:cos2222abbca 可算出可算出 AB 的长。的长。(2)如果已知一个四棱柱的各棱长和一条)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦夹角都相等,那么可以确定各棱之间夹角的余弦值吗?值吗?分析:分析:如图,设以顶点如图,设以顶点 为端点的对角线为端点的对角线长为长为 ,三条棱长分别
15、为,三条棱长分别为 各棱间夹角为各棱间夹角为 。A1B1C1D1ABCDAd,cba 21212)(CCACABCAd 则则 cos)(2222acbcabbca )(2cos 2222acbcabcbad (3)如果已知一个四棱柱的各棱长都等于)如果已知一个四棱柱的各棱长都等于 ,并且以某一顶,并且以某一顶点为端点的各棱间的夹角都等于点为端点的各棱间的夹角都等于 ,那么可以确定这个四棱柱相邻,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?两个夹角的余弦值吗?a A1B1C1D1ABCD分析:分析:二面角二面角平面角平面角向量的夹角向量的夹角回归图形回归图形 解:解:如图,在平面如图,在平面
16、AB1 内过内过 A1 作作 A1EAB 于点于点 E,EF在平面在平面 AC 内作内作 CFAB 于于 F。cos sin 1aBFAEaCFEA ,则则 CFEAFCEA cos coscos 11,|11CFEACFEA 221sin)()(aBFCBAEAA 2222222sincos)cos(cos)cos(coscosaaaaa cos1cos 可以确定这个四棱柱相邻两个夹角的余弦值。可以确定这个四棱柱相邻两个夹角的余弦值。练习:练习:(1 1)如图)如图4 4,6060的二面角的棱上有的二面角的棱上有A A、B B两两点,直线点,直线ACAC、BDBD分别在这个二面角的两个半平面
17、分别在这个二面角的两个半平面内,且都垂直内,且都垂直ABAB,已知,已知ABAB4 4,ACAC6 6,BDBD8 8,求求CDCD的长。的长。B图图4ACD (2)三棱柱)三棱柱ABC-A1B1C1中,底面是边长为中,底面是边长为2的正三的正三角形,角形,A1AB45,A1AC60,求二面角,求二面角B-A A1-C的平面角的余弦值。的平面角的余弦值。ABCA1B1C1图图5 如图如图6,在棱长为,在棱长为 的正方体的正方体 中,中,分别是棱分别是棱 上的动点,且上的动点,且 。(1)求证:)求证:;(2)当三棱锥)当三棱锥 的体积取最大值时,求二的体积取最大值时,求二面角面角 的正切值。的
展开阅读全文