在做格兰杰因果检验之前课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《在做格兰杰因果检验之前课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 做格兰杰 因果 检验 之前 课件
- 资源描述:
-
1、计量经济学计量经济学第十章第十章时间序列计量经济模型时间序列计量经济模型引子:引子:是真回归还是伪回归?是真回归还是伪回归?经典回归分析的做法是经典回归分析的做法是:首先采用普通最小二乘法(首先采用普通最小二乘法(OLS)对回归模型进)对回归模型进行估计,然后根据可决系数或行估计,然后根据可决系数或F检验统计量值的检验统计量值的大小来判定变量之间的相依程度,根据回归系数大小来判定变量之间的相依程度,根据回归系数估计值的估计值的t统计量对系数的显著性进行判断,最统计量对系数的显著性进行判断,最后在回归系数显著不为零的基础上对回归系数估后在回归系数显著不为零的基础上对回归系数估计值给予经济解释。计
2、值给予经济解释。为了分析某国的个人可支配总收入为了分析某国的个人可支配总收入 与个人消与个人消费总支出费总支出 的关系,用的关系,用OLS法作法作 关于关于 的线性的线性回归,得到如下结果:回归,得到如下结果:-174.440.9672ttEI20.9941DW0.532R t (-7.481)(119.87)EIIE从回归结果来看,从回归结果来看,非常高,个人可支配总收非常高,个人可支配总收入入 的回归系数的回归系数t统计量也非常大,边际消费倾统计量也非常大,边际消费倾向符合经济假设。凭借经验判断,这个模型的向符合经济假设。凭借经验判断,这个模型的设定是好的,应是非常满意的结果。准备将这设定
3、是好的,应是非常满意的结果。准备将这个计量结果用于经济结构分析和经济预测。个计量结果用于经济结构分析和经济预测。可是有人提出,这个回归结果可能是虚假的!可是有人提出,这个回归结果可能是虚假的!可能只不过是一种可能只不过是一种“伪回归伪回归”!2RI “要千万小心要千万小心!”这里用时间序列数据进行的回归,究竟是真回这里用时间序列数据进行的回归,究竟是真回 归还是伪回归呢?为什么模型、样本、数据、归还是伪回归呢?为什么模型、样本、数据、检验结果都很理想,却可能得到检验结果都很理想,却可能得到“伪回归伪回归”的的结果呢?结果呢?时间序列数据被广泛地运用于计量经济研究。时间序列数据被广泛地运用于计量
4、经济研究。经典时间序列分析和回归分析有许多假定前提,经典时间序列分析和回归分析有许多假定前提,如序列的平稳性、正态性等。直接将经济变量如序列的平稳性、正态性等。直接将经济变量的时间序列数据用于建模分析,实际上隐含了的时间序列数据用于建模分析,实际上隐含了上述假定,在这些假定成立的条件下,据此而上述假定,在这些假定成立的条件下,据此而进行的进行的t检验、检验、F检验等才具有较高的可靠度。检验等才具有较高的可靠度。越来越多的经验证据表明,经济分析中所涉及越来越多的经验证据表明,经济分析中所涉及的大多数时间序列是非平稳的。的大多数时间序列是非平稳的。问题:问题:如果直接将非平稳时间序列当作平稳时间序
5、列如果直接将非平稳时间序列当作平稳时间序列来进行分析,会造成什么不良后果;来进行分析,会造成什么不良后果;如何判断一个时间序列是否为平稳序列;如何判断一个时间序列是否为平稳序列;当我们在计量经济分析中涉及到非平稳时间序当我们在计量经济分析中涉及到非平稳时间序列时,应作如何处理?列时,应作如何处理?第十章第十章 时间序列计量经济模型时间序列计量经济模型本章主要讨论本章主要讨论:l 时间序列的基本概念时间序列的基本概念l 时间序列平稳性的单位根检验时间序列平稳性的单位根检验l 协整协整第一节第一节 时间序列基本概念时间序列基本概念 本节基本内容本节基本内容:伪回归问题伪回归问题 随机过程的概念随机
6、过程的概念 时间序列的平稳性时间序列的平稳性 一、伪回归问题一、伪回归问题传统计量经济学模型的假定条件:序列的平稳传统计量经济学模型的假定条件:序列的平稳性、正态性。性、正态性。所谓所谓“伪回归伪回归”,是指变量间本来不存在相依,是指变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误关系,但回归结果却得出存在相依关系的错误结论。结论。20世纪世纪70年代,年代,Grange、Newbold 研究发现,研究发现,造成造成“伪回归伪回归”的根本原因在于时序序列变量的根本原因在于时序序列变量的非平稳性的非平稳性二、随机过程二、随机过程有些随机现象,要认识它必须研究其发展变化有些随机现象,要
7、认识它必须研究其发展变化过程,随机现象的动态变化过程就是随机过程。过程,随机现象的动态变化过程就是随机过程。例如,考察一段时间内每一天的电话呼叫次数,例如,考察一段时间内每一天的电话呼叫次数,需要考察依赖于时间需要考察依赖于时间t的随机变量的随机变量 ,就就是一随机过程。是一随机过程。又例如,某国某年的又例如,某国某年的GNP总量,是一随机变量,总量,是一随机变量,但若考查它随时间变化的情形,则但若考查它随时间变化的情形,则 就就是一随机过程。是一随机过程。ttGNPtt tT()随机过程的严格定义随机过程的严格定义若对于每一特定的若对于每一特定的 ,为一随机变量,为一随机变量,则称这一族随机
8、变量则称这一族随机变量 为一个随机过程。为一个随机过程。若若 为一区间,则为一区间,则 为一连续型随机过程。为一连续型随机过程。若若 为离散集合,如为离散集合,如 或或 ,则则 为离为离散型随机过程。散型随机过程。离散型时间指标集的随机过程通常称为随机型时间离散型时间指标集的随机过程通常称为随机型时间序列,简称为时间序列。序列,简称为时间序列。tYtYYttYTT(0,1,2,T=)(,-2,-1,0,1,2,T=)三、时间序列的平稳性三、时间序列的平稳性所谓时间序列的平稳性,是指时间序列的统计规所谓时间序列的平稳性,是指时间序列的统计规律不会随着时间的推移而发生变化。律不会随着时间的推移而发
9、生变化。直观上,一个平稳的时间序列可以看作一条围绕直观上,一个平稳的时间序列可以看作一条围绕其均值上下波动的曲线。其均值上下波动的曲线。从理论上,有两种意义的平稳性,一是严格平稳,从理论上,有两种意义的平稳性,一是严格平稳,另一种是弱平稳。另一种是弱平稳。严格平稳严格平稳是指随机过程是指随机过程 的联合分布函数与时间的的联合分布函数与时间的位移无关。设位移无关。设 为一随机过程,为一随机过程,为任为任意实数,若联合分布函数满足:意实数,若联合分布函数满足:则称则称 为严格平稳过程,它的分布结构不为严格平稳过程,它的分布结构不随时间推移而变化。随时间推移而变化。tY11211ntttt+ht+h
10、nnnY,Y,.,YY,.,YFy,.,yFy,.,ytYn,htY弱平稳弱平稳是指随机过程是指随机过程 的期望、方差和协方差不随的期望、方差和协方差不随时间推移而变化。若时间推移而变化。若 满足:满足:则称则称 为弱平稳随机过程。在一般的分析为弱平稳随机过程。在一般的分析讨论中,平稳性通常是指弱平稳。讨论中,平稳性通常是指弱平稳。Cov(,)Cov(,)(,0)stt-st+hs+hY YYYr t-sr20Var()tYrtYYttYE Y()t时间序列的非平稳性时间序列的非平稳性是指时间序列的统计规律随着时间的位移而发是指时间序列的统计规律随着时间的位移而发生变化,即生成变量时间序列数据
11、的随机过程生变化,即生成变量时间序列数据的随机过程的特征随时间而变化。的特征随时间而变化。在实际中遇到的时间序列数据很可能是非平稳在实际中遇到的时间序列数据很可能是非平稳序列,而平稳性在计量经济建模中又具有重要序列,而平稳性在计量经济建模中又具有重要地位,因此有必要对观测值的时间序列数据进地位,因此有必要对观测值的时间序列数据进行平稳性检验。行平稳性检验。第二节第二节 时间序列平稳性的单位根检验时间序列平稳性的单位根检验 本节基本内容本节基本内容:单位根检验单位根检验 DickeyFuller检验检验 Augmented DickeyFuller检验检验一、单位根过程一、单位根过程为了说明单位
12、根过程的概念,我们侧重以为了说明单位根过程的概念,我们侧重以AR(1)模型进行分析模型进行分析:根据平稳时间序列分析的理论可知,当根据平稳时间序列分析的理论可知,当 时,该序列时,该序列 是平稳的是平稳的,此模型是经典的此模型是经典的Box-Jenkins时间序列时间序列AR(1)模型。模型。Yt11tt-tYYt当当 ,则序列的生成过程变为如下随机游动过程,则序列的生成过程变为如下随机游动过程(Random Walk Process):其中其中 独立同分布且均值为零、方差恒定为独立同分布且均值为零、方差恒定为 。随机。随机游动过程的方差为:游动过程的方差为:当当 时,序列的方差趋于无穷大,说
13、明随机游动过时,序列的方差趋于无穷大,说明随机游动过程是非平稳的。程是非平稳的。1-1-2-112-12Var()Var()Var()Var()ttttttttYYY.tt tY=Y1tt2 单位根过程单位根过程如果一个序列是随机游动过程,则称这个序列如果一个序列是随机游动过程,则称这个序列是一个是一个“单位根过程单位根过程”。为什么称为为什么称为“单位根过程单位根过程”?将一阶自回归模型表示成如下形式:将一阶自回归模型表示成如下形式:其中,其中,是滞后算子,即是滞后算子,即 -1-(1-)tttttYYL Y或-1ttLYYL根据模型的滞后多项式根据模型的滞后多项式 ,可以写出对应的,可以写
14、出对应的线性方程:线性方程:(通常称为特征方程)(通常称为特征方程)该方程的根为:该方程的根为:。当当 时序列是平稳的,特征方程的根满足条时序列是平稳的,特征方程的根满足条件件 ;当当 时,序列的生成过程变为随机游动过程,时,序列的生成过程变为随机游动过程,对应特征方程的根对应特征方程的根 ,所以通常称序列含有单,所以通常称序列含有单位根,或者说序列的生成过程为位根,或者说序列的生成过程为“单位根过程单位根过程”。1-L1-0ZZ 11Z 11Z 结论结论:随机游动过程是非平稳的。随机游动过程是非平稳的。因此,检验序列的非平稳性就变为检验特征因此,检验序列的非平稳性就变为检验特征方程是否有单位
15、根,这就是单位根检验方法方程是否有单位根,这就是单位根检验方法的由来的由来 。从单位根过程的定义可以看出,含一个单位根从单位根过程的定义可以看出,含一个单位根的过程,其一阶差分:的过程,其一阶差分:是一平稳过程,像这种经过一次差分后变为平是一平稳过程,像这种经过一次差分后变为平稳的序列称为一阶单整序列稳的序列称为一阶单整序列(Integrated Process),记为记为 。-1-ttttYY Yu ItY(1)有时,一个序列经一次差分后可能还是非平稳有时,一个序列经一次差分后可能还是非平稳的,如果序列经过二阶差分后才变成平稳过程,的,如果序列经过二阶差分后才变成平稳过程,则称序列则称序列
16、为二阶单整序列,记为为二阶单整序列,记为 。一般地,如果序列经过一般地,如果序列经过 次差分后平稳,而次差分后平稳,而 次差分却不平稳,那么称为次差分却不平稳,那么称为 阶单整序列,记为阶单整序列,记为 ,称为整形阶称为整形阶数。特别地,若序列数。特别地,若序列 本身是平稳的本身是平稳的,则称则称序列为零阶单整序列,记为序列为零阶单整序列,记为 。tY I2tY()tY ItYd()I0tY()ddd1d 二、二、Dickey-Fuller检验(检验(DF检验)检验)大多数经济变量呈现出强烈的趋势特征。这些具有趋大多数经济变量呈现出强烈的趋势特征。这些具有趋势特征的经济变量,当发生经济振荡或冲
17、击后,一般势特征的经济变量,当发生经济振荡或冲击后,一般会出现两种情形会出现两种情形:受到振荡或冲击后,经济变量逐渐又回它们的受到振荡或冲击后,经济变量逐渐又回它们的长期趋势轨迹;长期趋势轨迹;这些经济变量没有回到原有轨迹,而呈现出随这些经济变量没有回到原有轨迹,而呈现出随机游走的状态。机游走的状态。若我们研究的经济变量遵从一个非平稳过程,一个变若我们研究的经济变量遵从一个非平稳过程,一个变量对其他变量的回归可能会导致伪回归结果。这是研量对其他变量的回归可能会导致伪回归结果。这是研究单位根检验的重要意义所在。究单位根检验的重要意义所在。假设数据序列是由下列自回归模型生成的:假设数据序列是由下列
18、自回归模型生成的:其中,其中,独立同分布,期望为零,方差为独立同分布,期望为零,方差为 ,我,我们要检验该序列是否含有单位根。检验的原假们要检验该序列是否含有单位根。检验的原假设为:设为:回归系数的回归系数的OLS估计为:估计为:检验所用的统计量为:检验所用的统计量为:t-1tttYY20H:1-12-1ttty yy-t在在 成立的条件下,成立的条件下,t统计量为:统计量为:Dickey、Fuller通过研究发现,在原假设成立的通过研究发现,在原假设成立的情况下,该统计量不服从情况下,该统计量不服从t分布。所以传统的分布。所以传统的t检检验法失效。验法失效。但可以证明,上述统计量的极限分布存
19、在,一般但可以证明,上述统计量的极限分布存在,一般称其为称其为Dickey-Fuller分布。根据这一分布所作的分布。根据这一分布所作的检验称为检验称为DF检验检验,为了区别为了区别,t 统计量的值有时也称统计量的值有时也称为为 值。值。-1t0H:1Dickey、Fuller得到得到DF检验的临界值,并编制检验的临界值,并编制了了DF检验临界值表供查。在进行检验临界值表供查。在进行DF检验时,比检验时,比较较t统计量值与统计量值与DF检验临界值,就可在某个显著检验临界值,就可在某个显著性水平上拒绝或接受原假设。性水平上拒绝或接受原假设。在实际应用中,可按如下检验步骤进行:在实际应用中,可按如
20、下检验步骤进行:(1)根据观察数据,用根据观察数据,用OLS法估计一阶自回归模法估计一阶自回归模型,得到回归系数的型,得到回归系数的OLS估计:估计:-1tttYY121tttyyy(2)提出假设提出假设 检验用统计量为常规检验用统计量为常规t统计量,统计量,(3)计算在原假设成立的条件下计算在原假设成立的条件下t统计量值,查统计量值,查DF检验临界值表得临界值,然后将检验临界值表得临界值,然后将t统计量值与统计量值与DF检验临界值比较:检验临界值比较:若若t统计量值小于统计量值小于DF检验临界值,则拒绝原假设,检验临界值,则拒绝原假设,说明序列不存在单位根;说明序列不存在单位根;若若t统计量
21、值大于或等于统计量值大于或等于DF检验临界值,则接受检验临界值,则接受原假设,说明序列存在单位根。原假设,说明序列存在单位根。0H:1-t1H:1Dickey、Fuller研究发现,研究发现,DF检验的临界值同序检验的临界值同序列的数据生成过程以及回归模型的类型有关,因列的数据生成过程以及回归模型的类型有关,因此他们针对如下三种方程编制了临界值表,后来此他们针对如下三种方程编制了临界值表,后来Mackinnon把临界值表加以扩充,形成了目前使把临界值表加以扩充,形成了目前使用广泛的临界值表,在用广泛的临界值表,在EViews软件中使用的是软件中使用的是Mackinnon临界值表。临界值表。这三
22、种模型如下:这三种模型如下:模型模型I I:模型模型:模型模型:-1tttYY-1tttYY-1tttYtYDF检验存在的问题是,在检验所设定的模型时,检验存在的问题是,在检验所设定的模型时,假设随机扰动项不存在自相关。但大多数的经济假设随机扰动项不存在自相关。但大多数的经济数据序列是不能满足此项假设的,当随机扰动项数据序列是不能满足此项假设的,当随机扰动项存在自相关时,直接使用存在自相关时,直接使用DF检验法会出现偏误,检验法会出现偏误,为了保证单位根检验的有效性,人们对为了保证单位根检验的有效性,人们对DF检验检验进行拓展,从而形成了扩展的进行拓展,从而形成了扩展的DF检验检验(Augme
23、nted Dickey-Fuller Test),简称为,简称为ADF检检验。验。三、三、Augmented Dickey-Fuller检验检验(ADF检验)检验)假设基本模型为如下三种类型:假设基本模型为如下三种类型:模型模型I I:模型模型:模型模型:其中其中 为随机扰动项,它可以是一个一般的为随机扰动项,它可以是一个一般的平稳过程。平稳过程。-1tttYY-1tttYY-1tttYtYt为了借用为了借用DF检验的方法,将模型变为如下式:检验的方法,将模型变为如下式:模型模型I:模型模型:模型模型:可以证明,在上述模型中检验原假设的可以证明,在上述模型中检验原假设的t统计量的极限分统计量的
24、极限分布,与布,与DF检验的极限分布相同,从而可以使用相同的临检验的极限分布相同,从而可以使用相同的临界值表,这种检验称为界值表,这种检验称为ADF检验检验。-1-1pttit itiYYY-1-1pttit itiYYY-1-1pttit itiYtYY根据根据中国统计年鉴中国统计年鉴2012,得到我国,得到我国19782011年的年的GDP序列序列(如表如表10.1),检验其是否为平稳序列。,检验其是否为平稳序列。表表10.1 中国中国19782011年度年度GDP序列序列例例10.1年度年度GDP年度年度GDP年度年度GDP19783645.22199018667.82200212033
25、2.719794062.58199121781.52003135822.819804545.62199226923.482004159878.319814891.56199335333.922005184937.419825323.35199448197.862006216314.419835962.65199560793.732007265810.319847208.05199671176.592008314045.419859016.04199778973.032009340902.8198610275.18199884402.282010401512.8198712058.6219998
展开阅读全文