函数曲线的凹凸性课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数曲线的凹凸性课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 曲线 凹凸 课件
- 资源描述:
-
1、6.6 6.6 曲线的凹凸性与拐点及渐近线曲线的凹凸性与拐点及渐近线 曲线的凹凸性定义曲线的凹凸性定义 凹凸性的判定凹凸性的判定 曲线的拐点及其求法曲线的拐点及其求法 渐近线渐近线 小结小结 思考题思考题 作业作业一、曲线凹凸的定义问题问题:如何研究曲线的弯曲方向如何研究曲线的弯曲方向?xyoxyo1x2x)(xfy 图形上任意弧段位图形上任意弧段位于所张弦的上方于所张弦的上方xyo)(xfy 1x2x图形上任意弧段位图形上任意弧段位于所张弦的下方于所张弦的下方ABC定义定义的(或凸弧)的(或凸弧)上的图形是(向上)凸上的图形是(向上)凸在在那末称那末称如果恒有如果恒有的(或凹弧)的(或凹弧)
2、上的图形是(向上)凹上的图形是(向上)凹在在那末称那末称恒有恒有点点上任意两上任意两如果对如果对上连续上连续在区间在区间设设IxfxfxfxxfIxfxfxfxxfxxIIxf)(,2)()()2(;)(,2)()()2(,)(2121212121 ;)(,)(,)(),(,)(的的或凸或凸内的图形是凹内的图形是凹在在那末称那末称的的或凸或凸内的图形是凹内的图形是凹且在且在内连续内连续在在如果如果baxfbabaxf二、曲线凹凸的判定xyo)(xfy xyo)(xfy abAB递增递增)(xf abBA0 y递减递减)(xf 0 y定理定理1 1.,)(,0)()2(;,)(,0)()1(),
3、(,),(,)(上的图形是凸的上的图形是凸的在在则则上的图形是凹的上的图形是凹的在在则则内内若在若在一阶和二阶导数一阶和二阶导数内具有内具有在在上连续上连续在在如果如果baxfxfbaxfxfbababaxf 证证20000)(!2)()()()(xxfxxxfxfxf )(0之间之间与与在在xx )()()(000 xxxfxfxf即即)()()(000 xxxfxfxf ),(0bax 任取任取 泰勒公式泰勒公式),(bax 处的切线处的切线在在曲线曲线0)(xxfy 0 20)(!2)(xxf ),(bax 0)(xf若若)()()(000 xxxfxfxf 10010()()()()(
4、1)f xf xfxxx 20020()()()()(2)f xf xfxxx 1100120()()2()()(2)f xf xf xfxxxx(1)(2)02()f x 01112()()().22f xf xxxf 即即例例1 1.3的凹凸性的凹凸性判断曲线判断曲线xy 解解,32xy ,6xy 时,时,当当0 x,0 y为凸的;为凸的;在在曲线曲线0,(时,时,当当0 x,0 y为凹的;为凹的;在在曲线曲线),0.)0,0(点点是是曲曲线线由由凸凸变变凹凹的的分分界界点点注意到注意到,三、曲线的拐点及其求法连续曲线上凹凸的分界点称为连续曲线上凹凸的分界点称为曲线的拐点曲线的拐点.1 1
5、、定义、定义注意注意:拐点处的切线必在拐点处穿过曲线拐点处的切线必在拐点处穿过曲线.2 2、拐点的求法、拐点的求法,0)(,)(00 xfxxf且且的邻域内二阶可导的邻域内二阶可导在在设函数设函数;)(,(,)()1(000即为拐点即为拐点点点变号变号两近旁两近旁xfxxfx .)(,(,)()2(000不是拐点不是拐点点点不变号不变号两近旁两近旁xfxxfx 方法方法1:1:例例2 2.14334凹、凸的区间凹、凸的区间的拐点及的拐点及求曲线求曲线 xxy解解),(:D,121223xxy ).32(36 xxy,0 y令令.32,021 xx得得x)0,(),32()32,0(032)(x
6、f )(xf 00凹的凹的凸的凸的凹的凹的拐点拐点拐点拐点)1,0()2711,32().,32,32,0,0,(凹凸区间为凹凸区间为0000()()()limxxfxfxfxxx 不不妨妨0 00()fxx 在在两侧异号,两侧异号,0 x是拐点。是拐点。方法方法2:2:.)()(,(,0)(,0)(,)(00000的拐点的拐点线线是曲是曲那末那末而而且且的邻域内三阶可导的邻域内三阶可导在在设函数设函数xfyxfxxfxfxxf 例例3 3.)2,0(cossin的拐点的拐点内内求曲线求曲线 xxy解解,sincosxxy ,cossinxxy .sincosxxy ,0 y令令.47,432
展开阅读全文