凝聚态物质的数值模拟方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《凝聚态物质的数值模拟方法课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 凝聚 物质 数值 模拟 方法 课件
- 资源描述:
-
1、计算凝聚态物理凝聚态物质的数值模拟方法(2)马红孺http:/ Carlo 模拟基础模拟基础随机变量及其分布随机变量及其分布 随机变量(以下用表示)可分为两类,一类是离散型随机变量,它可以取一系列分立值 x1,x2,xn,其对应的取某一值的几率为p1,p2,pn,.pi称为的几率分布;另一类是连续型随机变量,可连续取值,设在区间x,x+x内取值的几率为p(x 0,有这一定理指出,不论随机变量的分布如何,只要n足够大,则算术平均与数学期望值可无限接近,也就是说,算术平均以几率收敛于其数学期望值.中心极限定理:设 1,2,n,为一随机变量序列,相互独立,具有同样分布,且 E(i)=a,D(i)=2
2、 存在,则当n!1时,推论:令:成立的几率为 1-,(A)1-称为可信水平.,1-和X的数值关系0.50.050.020.011-0.50.950.980.99X0.67451.96002.32632.5758由表可见,当X=2.5758时,(A)成立的几率已经为99%,也就是说,该式的可靠性已相当高.Markov 链构造一个过程,从系统的某一微观状态出发,并在过程的每一步转移到一个新的状态.为了确定起见,下面用xi代表系统的微观状态,如果从x0出发,则这一过程产生一系列状态x1,x2,xi,这一系列状态构成一个链.Markov过程,是指这样一种过程,在过程的每一步所达到的状态只与前一状态有关
3、,从一状态r到另一状态s的转移通过一转移几率w(xr!xs)来实现.由 Markov 过程产生的一系列状态所构成的链称为 Markov 链.为了实现按照正则分布抽样,我们可以构造这样一个 Markov 链,使得无论从何状态出发,存在一个大数M,在丢掉链的前面M个状态后,链上其余的状态满足正则分布.只要取w(xr!xs)满足如下条件,就可达到我们的要求.式中P(x)为所要达到的分布,此处为正则分布.这一式子又称为细致平衡条件.为了证明上式,我们考虑很多个平行的Markov链,在一个给定的某一步,有Nr个链处于第r个态,Ns个链处于第s个态.于是在下一步从r态到s态的数目为从s态到r态的数目为从r
4、态到s态的净转移的数目为若w(xr!xs)满足细致平衡条件,则上式成为这是一个十分重要的结果,上式表明,如果二个状态之间不满足正则分布,则这一Markov 过程的演化结果将总是使其趋于满足.这样,就证明了我们的论断.正则分布的抽样方法正则分布的抽样方法:选择一个满足细致平衡条件的转移几率;产生一个Markov 链,丢掉链的前而面M个状态;用其余状态进行物理量的计算.这一算法是五十年代初由 Metropolis 提出来的,因此现在一般称为Metropolis 算法.考虑从r态到s态的转移,若二状态的能量差为则:当年Metropolis 选择:目前常用的另一种选择是:应当注意的是,w的选择并不唯一
5、,只要满足细致平衡条件的要求即可,但不同的w收敛速度往往差别很大,如何选择合适的w以达到尽可能快的收敛速度和尽可能高的计算精度仍然是当前Monte Carlo算法研究的前沿课题之一.例题例题,Ising模型的模拟模型的模拟Ising 模型:式中J称为交换积分,h为外场,si 可取值(1,-1),称为自旋变量.Ising 模型是最简单的非平庸统计物理模型,它是由德国物理学家 Lenz 在二十年代提出的,这一模型可用来描述单轴各向异性磁性系统,合金等物理体系,同时也是一个十分有兴趣的理论模型.Ising 最早给出了这一模型在一维情况下的严格解,证明了在一维下这一模型不存在相变.Onsager 于1
6、944 年做出了零场下这一模型在二维空间的严格解并计算了它的相变温度,比热在相变点的行为等热力学量.杨振宁在1952 年解出了外场很小时二维空间的 Ising 模型,求出了序参量的临界行为.由于对这一模型的很多形为目前了解的比较透彻,因此它经常被用来做为检验各种数值方法或解析近似方法的标准.对于Ising模型,人们通常感兴趣的热力学量是能量 E=h Hi,序参量 ,能量的涨落 hH2i-hHi2,序参量的涨落hS2i-hSi2等.能量的涨落与系统的比热成正比,而序参量的涨落则正比于系统的磁化率.一个算法一个算法 选择一个格点 i,其自旋将考虑作翻转 si!-si.计算与此翻转相联系的能量变化
7、H.计算这一翻转的转移几率 w.产生一在 0,1 之间均匀分布的随机数.如果w,则翻转该自旋,否则,保持不变.不论何种情况,其结果都作为一新的状态.分析该状态,为计算平均值收集数据.讨论讨论:关于每一步要翻转的格点i的选择,一般来说可有很多种不同的方法,最常用的有两种,一种是顺序取每一个格点顺序取每一个格点,另一种是随机的选取随机的选取.在随机选取时,应使每个格点平均说来被访问的次数相同,通常每个格点被访问一次称为一个 Monte Carlo 步(Monte Carlo Step or MCS),一次有价值的计算通常需要做几千或几万个MCS.有时,为了得到高精度的结果,甚至要作百万MCS以上的
展开阅读全文