16第六节独立性课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《16第六节独立性课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 16 第六 独立性 课件
- 资源描述:
-
1、一、事件的相互独立性一、事件的相互独立性二、几个重要定理二、几个重要定理三、例题讲解三、例题讲解四、小结四、小结第六节第六节 独立性独立性一、事件的相互独立性一、事件的相互独立性,.,),23(5取到绿球取到绿球第二次抽取第二次抽取取到绿球取到绿球第一次抽取第一次抽取记记地取两次地取两次有放回有放回每次取出一个每次取出一个红红绿绿个球个球盒中有盒中有 BA则有则有),()(BPABP.发生的可能性大小发生的可能性大小的发生并不影响的发生并不影响它表示它表示BA)()(BPABP)()()(BPAPABP 1.引例引例.,)()()(,独立独立简称简称相互独立相互独立则称事件则称事件如果满足等式
2、如果满足等式是两事件是两事件设设BABABPAPABPBA 事件事件 A 与与 事件事件 B 相互独立相互独立,是指事件是指事件 A 的的发生与事件发生与事件 B 发生的概率无关发生的概率无关.说明说明 2.定义定义两事件相互独立两事件相互独立)()()(BPAPABP 两事件互斥两事件互斥 ABAB,21)(,21)(BPAP若若AB).()()(BPAPABP 则则例如例如由此可见由此可见两事件两事件相互独立,相互独立,但两事件但两事件不互斥不互斥.两事件相互独立与两事件互斥的关系两事件相互独立与两事件互斥的关系.请同学们思考请同学们思考二者之间没二者之间没有必然联系有必然联系AB21)(
3、,21)(BPAP若若.)()()(BPAPABP 故故由此可见由此可见两事件两事件互斥互斥但但不独立不独立.,0)(ABP则则,41)()(BPAP3.三事件两两相互独立的概念三事件两两相互独立的概念.,),()()(),()()(),()()(,两两相互独立两两相互独立则称事件则称事件如果满足等式如果满足等式是三个事件是三个事件设设定义定义CBACPAPACPCPBPBCPBPAPABPCBA 注意注意三个事件相互独立三个事件相互独立三个事件两两相互独立三个事件两两相互独立4.三事件相互独立的概念三事件相互独立的概念.,),()()()(),()()(),()()(),()()(,相互独立
4、相互独立则称事件则称事件如果满足等式如果满足等式是三个事件是三个事件设设定义定义CBACPBPAPABCPCPAPACPCPBPBCPBPAPABPCBA ),()()()(2121kkiiiiiiAPAPAPAAAP.,21为为相相互互独独立立的的事事件件则则称称nAAAn 个事件相互独立个事件相互独立n个事件两两相互独立个事件两两相互独立具有等式具有等式任意任意如果对于任意如果对于任意个事件个事件是是设设,1),1(,2121niiinkknAAAkn 推广推广证明证明)()()(APABPABP)()()()(BPAPBPAP ).()(BPABP.).()(,.0)(,反反之之亦亦然然
5、则则互互独独立立相相若若且且是是两两事事件件设设BPABPBAAPBA 二、几个重要定理二、几个重要定理定理一定理一证明证明.独独立立与与先先证证BA,)(BAABBAABA且且因因为为),()()(BAPABPAP 所所以以).()()(ABPAPBAP 即即.,也相互独立也相互独立与与与与与与则下列各对事件则下列各对事件相互独立相互独立若若BABABABA定理二定理二)()()()(BPAPAPBAP 因因而而)(1)(BPAP ).()(BPAP .相互独立相互独立与与从而从而BA又因为又因为 A、B 相互独立相互独立,所以有所以有),()()(BPAPABP 两个结论两个结论.)2(,
6、)2(,.121个个事事件件也也是是相相互互独独立立其其中中任任意意则则相相互互独独立立若若事事件件nkknAAAn .,)2(,.22121个事件仍相互独立个事件仍相互独立所得的所得的立事件立事件们的对们的对中任意多个事件换成它中任意多个事件换成它则将则将相互独立相互独立个事件个事件若若nAAAnAAAnnn 例例1 设每一名机枪射击手击落飞机的概率都是设每一名机枪射击手击落飞机的概率都是0.2,若若10名机枪射击手同时向一架飞机射击名机枪射击手同时向一架飞机射击,问击落飞问击落飞机的概率是多少机的概率是多少?射击问题射击问题解解,名射手击落飞机”名射手击落飞机”为“第为“第设事件设事件iA
7、i事件事件 B 为为“击落飞机击落飞机”,1021AAAB 则则三、例题讲解三、例题讲解.10,2,1 i)()(1021AAAPBP)(11021AAAP )()()(11021APAPAP .893.0)8.0(110 )(11021AAAP 例例2 甲、乙、丙三人同时对飞机进行射击甲、乙、丙三人同时对飞机进行射击,三人三人击中的概率分别为击中的概率分别为 0.4,0.5,0.7,飞机被一人击中飞机被一人击中而被击落的概率为而被击落的概率为0.2,被两人击中而被击落的概被两人击中而被击落的概率为率为 0.6,若三人都击中飞机必定被击落若三人都击中飞机必定被击落,求飞机求飞机被击落的概率被击
8、落的概率.解解 ,个个人人击击中中飞飞机机表表示示有有设设iAiA,B,C 分别表示甲、乙、丙击中飞机分别表示甲、乙、丙击中飞机,1CBACBACBAA 由由于于,7.0)(,5.0)(,4.0)(CPBPAP则则)()()()()()()()()()(1CPBPAPCPBPAPCPBPAPAP 故故得得7.05.06.03.05.06.03.05.04.0 .36.0,2BCACBACABA 因因为为)()()()()()()()()(CPBPAPCPBPAPCPBPAP .41.0)()(2BCACBACABPAP 得得,3ABCA 由由)()(3ABCPAP 得得)()()(CPBPAP
展开阅读全文