空间几何体的表面积和体积课件整理.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间几何体的表面积和体积课件整理.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 表面积 体积 课件 整理
- 资源描述:
-
1、1.3 1.3 简单几何体的表面积和体积简单几何体的表面积和体积 1 1、表面积:几何体表面的面积、表面积:几何体表面的面积 2 2、体积:几何体所占空间的大小。、体积:几何体所占空间的大小。1/6/2023 2:04:56 AM1/6/2023 2:04:56 AM 云在漫步云在漫步1/6/2023 2:04:56 AM1/6/2023 2:04:56 AM 云在漫步云在漫步表面积、全面积和侧面积 表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)全面积全面积是立体几何里的概念,相对于截面积(“截面积”即切面的面积)来说的,就是表面积总和 侧面积指立体图形的各个侧面的
2、面积之和(除去底面)1/6/2023 2:04:57 AM1/6/2023 2:04:57 AM 云在漫步云在漫步1/6/2023 2:04:57 AM1/6/2023 2:04:57 AM 云在漫步云在漫步棱柱、棱锥、棱台的侧面积 侧面积所指的对象分别如下:棱柱-直直棱柱。棱锥-正正棱锥。棱台-正正棱台2.2.几何体的表面积几何体的表面积 (1 1)棱柱、棱锥、棱台的表面积就是)棱柱、棱锥、棱台的表面积就是 .(2 2)圆柱、圆锥、圆台的侧面展开图分别是)圆柱、圆锥、圆台的侧面展开图分别是 、;它们的表面积等于;它们的表面积等于 .各面面积各面面积之和之和矩矩形形扇形扇形扇环形扇环形侧面积侧
3、面积与底面面积之和与底面面积之和回忆复习有关概念回忆复习有关概念1、直棱柱:、直棱柱:2、正棱柱:、正棱柱:3、正棱锥:、正棱锥:4、正棱台:、正棱台:侧棱和底面侧棱和底面垂直垂直的棱柱叫直棱柱的棱柱叫直棱柱底面是正多边形的底面是正多边形的直直棱柱叫正棱柱棱柱叫正棱柱底面是正多边形,底面是正多边形,顶点在底面的射影是底面中心顶点在底面的射影是底面中心的棱锥的棱锥正棱锥正棱锥被平行于底面的平面所截,被平行于底面的平面所截,截面和底面之间的部分叫正棱台截面和底面之间的部分叫正棱台作直三棱柱、正三棱锥、正三棱台各一个,找作直三棱柱、正三棱锥、正三棱台各一个,找出出斜高斜高CBAA1B1C1COBAP
4、DC1D1A1ODBACB1斜高的概念2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是分别经过旋转轴作一个平面,观察得到的轴截面是 什么形状的图形什么形状的图形.ABCDABCABCD直棱柱:设棱柱的高为直棱柱:设棱柱的高为h,底面多边形的周长为,底面多边形的周长为c,则则S直棱柱侧直棱柱侧 .(类比矩形的面积)(类比矩形的面积)圆柱:如果圆柱的底面半径为圆柱:如果圆柱的底面半径为r,母线长为,母线长为l,那么,那么S圆柱侧圆柱侧 .(类比矩形的面积)(类比矩形的面积)ch2rl知识点一:柱、锥、台、球的表面
5、积与侧面积知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?chhcbaS )(直直棱棱拄拄侧侧habcabchh棱柱的侧面展开图是什么?如何计算它的表面积?棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图正棱柱的侧面展开图底侧表面积SSS2思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?rlr2 长长宽宽llSSr2 长长方方形形圆圆柱柱侧侧 圆柱的侧面展开图是矩
6、形圆柱的侧面展开图是矩形2222()Srrlr rlOOrl2 r 底侧表面积SSS2正棱锥:设正棱锥底面正多边形的周长为正棱锥:设正棱锥底面正多边形的周长为c,斜,斜高为高为h,则,则S正棱锥侧正棱锥侧 .(类比三角形的面积)(类比三角形的面积)圆锥:如果圆锥的底面半径为圆锥:如果圆锥的底面半径为r,母线长为,母线长为l,那,那么么S圆锥侧圆锥侧 .(类比三角形的面积)(类比三角形的面积)12chrl(2)锥体的侧面积锥体的侧面积把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?hh21chS正棱锥侧正棱锥侧棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的侧面展开图是什么?如何计算
7、它的表面积?/h/h正三棱锥的侧面展开图正三棱锥的侧面展开图侧面展开正五棱锥的侧面展开图正五棱锥的侧面展开图底侧表面积SSS思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?rl180lnl 扇扇lR 扇扇rllllnSS 扇扇扇扇圆圆锥锥侧侧213602圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形r2lOr2()Srrlr rl 正棱台:设正正棱台:设正n棱台的上底面、下底面周棱台的上底面、下底面周长分别为长分别为c、c,斜高为,斜高为h,则正,
8、则正n棱台的侧面积公棱台的侧面积公式:式:S正棱台侧正棱台侧 .圆台:如果圆台的上、下底面半径分别为圆台:如果圆台的上、下底面半径分别为r、r,母线长为,母线长为l,则,则S圆台侧圆台侧 12(cc)hl(rr)(3)台体的侧面积台体的侧面积注注:表面积侧面积底面积:表面积侧面积底面积把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)(类比梯形的面积)hh)21hccS(正正棱棱台台侧侧侧面展开hh正四棱台的侧面展开图正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的侧面展开图是什么?如何计算它的表面积?下底上底侧表面积SSSS 参照圆柱和圆锥的侧
9、面展开图,试想象圆台的参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么侧面展开图是什么 r2lOrO r2 r圆台的侧面展开图是圆台的侧面展开图是扇环扇环22()Srrr lrl 思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?1r2rllrrSS)21(扇环扇环圆台侧圆台侧 r2lOrO r2 r22()Srrr lrl xrxrxl rxr xr l S侧侧()()r lxr xrlrxr x ()r lrl lOrO r圆柱、圆锥、
10、圆台三者的表面积公式之间有什么关系?圆柱、圆锥、圆台三者的表面积公式之间有什么关系?lOOrrr上底扩大上底扩大lOrr0上底缩小上底缩小2222()Srrlr r l 2()Srrlr rl22()Srrr lrl 棱柱、棱锥、棱台都是由多个平面图形围成的几何体,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h它们的侧面展开图还是平面图形,它们的侧面展开图还是平面图形,计算它们的计算它们的表面积就是计算它的各个侧面面积和底面面积表面积就是计算它的各个侧面面积和底面面积之和之和例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意
11、图中的直角梯形ABCC1A1B1O1ODD1E例3:圆台的上、下底面半径分别为2和4,高为 ,求其侧面展开图扇环所对的圆心角32分析:抓住相似三角形中的相似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式)cc21hS(正正棱棱台台C=021chS三三棱棱锥锥C=CchchS 直直棱棱柱柱S圆柱侧
12、=2rlS圆锥侧=rlS圆台侧=(r1+r2)lr1=0r1=r2例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;答:60例2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积79答:例例3 已知棱长为已知棱长为a,各面均为等边三角形的四面,各面均为等边三角形的四面体体S-ABC,求它的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开图是由四个全等的正三角形组成组成因为因为BC=a,aSBSD2360sin所以:所以:243232121aaaSDBCSABC因此,四面体因此,四面体S-A
13、BC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点的面积,过点S作作 ,ABCBCSD 例例4(2010年广东省惠州市高三调研年广东省惠州市高三调研)如图,已如图,已知正三棱柱知正三棱柱ABCA1B1C1的底面边长是的底面边长是2,D,E是是CC1,BC的中点,的中点,AEDE.(1)求此正三棱柱的侧棱长;求此正三棱柱的侧棱长;(2)正三棱柱正三棱柱ABCA1B1C1的表面积的表面积【思路点拨思路点拨】(1)证明证明AED为直为直角三角形,然后求侧棱长;角三角形,然后求侧棱长;(2)分别求出分别求出侧面积与底面积侧面积与底面积【点评点评】求表面积应分别求各部分面的面积,所求
14、表面积应分别求各部分面的面积,所以应弄清图形的形状,利用相应的公式求面积,规则的图以应弄清图形的形状,利用相应的公式求面积,规则的图形可直接求,不规则的图形往往要再进行转化,常分割成形可直接求,不规则的图形往往要再进行转化,常分割成几部分来求几部分来求思考:怎样求斜棱柱的侧面积?1)侧面展开图是 平行四边形 2)S斜棱柱侧=直截面周长侧棱长 3)S侧侧=所有侧面面积之和所有侧面面积之和1高考中对几何体的表面积的考查一般在客观题中,高考中对几何体的表面积的考查一般在客观题中,借以考查空间想象能力和运算能力,只要正确把握几何体借以考查空间想象能力和运算能力,只要正确把握几何体的结构,准确应用面积公
15、式,就可以顺利解决的结构,准确应用面积公式,就可以顺利解决几何体的表面积问题小结几何体的表面积问题小结2多面体的表面积是各个面的面积之和圆柱、多面体的表面积是各个面的面积之和圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和的面积之和3几何体的表面积应注意重合部分的处理几何体的表面积应注意重合部分的处理几何体占有空间部分的大小叫做它的体积几何体占有空间部分的大小叫做它的体积一、体积的概念与公理一、体积的概念与公理:公理公理1、长方体的体积等于它的
16、长、宽、高的积、长方体的体积等于它的长、宽、高的积。V长方体长方体=abc推论推论1、长方体的体积等于它的底面积、长方体的体积等于它的底面积s和高和高h的积的积。V长方体长方体=sh推论推论2、正方体的体积等于它的棱长、正方体的体积等于它的棱长a 的立方。的立方。V正方体正方体=a3公理公理2 2、夹在两个平行平面间的两个几何体,被平行、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。面的面积总相等,那么这两个几何体的体积相等。PQ祖暅原理祖暅原理定理定理1:柱体(棱柱、圆
17、柱)的体积等于它柱体(棱柱、圆柱)的体积等于它的底面积的底面积 s 和高和高 h 的积。的积。V柱体柱体=sh二:柱体的体积二:柱体的体积推论推论:底面半径为底面半径为r,高为高为h圆柱的体积是圆柱的体积是V圆柱圆柱=r2h三三:锥体体积锥体体积例例2 2:如图:三棱柱如图:三棱柱ADAD1 1C C1 1-BDC,-BDC,底面积为底面积为S S,高为高为h h.ABD C D1C1CDA BCD1ADCC1D1A答答:可分成可分成棱锥棱锥A-D1DC,棱锥棱锥A-D1C1C,棱锥棱锥A-BCD.问:(问:(1 1)从)从A A点出发棱柱能点出发棱柱能分割分割成几个三棱锥?成几个三棱锥?3.
18、3.1 1锥体(棱锥、圆锥)的体积锥体(棱锥、圆锥)的体积 (底面积(底面积S,高高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题问题:锥体锥体(棱锥、圆锥)棱锥、圆锥)的体积的体积shV31三棱锥定理定理如果一个锥体(棱锥、圆锥)的底面如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:积是,高是,那么它的体积是:推论:如果圆锥的底面半径是推论:如果圆锥的底面半径是,高是,高是,那么它的体积是:那么它的体积是:hSS锥体锥体 3131圆锥圆锥 Shss/ss/hx四四.台体的体积台体的体积V V台体台体=1 1h(s+ss+
19、s)h(s+ss+s)3 3上下底面积分别是上下底面积分别是s/,s,高是高是h,则,则推论:如果圆台的上推论:如果圆台的上,下底面半径是下底面半径是r r1 1.r.r2,2,高是高是,那么它的体积是:,那么它的体积是:31圆台圆台 h)(222121rrrr五五.柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,为底面面积,h为柱体高为柱体高ShV 0SS分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高ShV31SS S为底面面积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小(1)长方体的
20、体积长方体的体积V长方体长方体abc .(其中其中a、b、c为长、宽、高,为长、宽、高,S为底面为底面积,积,h为高为高)(2)柱体柱体(圆柱和棱柱圆柱和棱柱)的体积的体积V柱体柱体Sh.其中,其中,V圆柱圆柱r2h(其中其中r为底面半径为底面半径)Sh知识点二柱、锥、台、球的体积知识点二柱、锥、台、球的体积(3)锥体锥体(圆锥和棱锥圆锥和棱锥)的体积的体积V锥体锥体 Sh.其中其中V圆锥圆锥 ,r为底面半径为底面半径13r2h(4)台体的体积公式台体的体积公式V台台h(SS)注:注:h为台体的高,为台体的高,S和和S分别为上下分别为上下两个底面的面积两个底面的面积其中其中V圆台圆台 注:注:
21、h为台体的高,为台体的高,r、r分别为上、分别为上、下两底的半径下两底的半径(5)球的体积球的体积V球球 .13h(r2rrr2)13R3例从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥ABCD,求它的体积是正方体体积的几分之几?1求空间几何体的体积除利用公式法外,还求空间几何体的体积除利用公式法外,还常用分割法、补体法、转化法等,它们是解决一常用分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算问题的常用方法些不规则几何体体积计算问题的常用方法几何体的体积小结几何体的体积小结2计算柱体、锥体、台体的体积关键是根据计算柱体、锥体、台体的体积关键是根据条件找出相应的底面面积
22、和高,要充分利用多面体条件找出相应的底面面积和高,要充分利用多面体的截面及旋转体的轴截面,将空间问题转化为平面的截面及旋转体的轴截面,将空间问题转化为平面问题问题RROORR球的体积球的体积:一个半径和高都等于一个半径和高都等于R的圆柱,挖去一个的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为后,所得的几何体的体积与一个半径为R的的半球的体积相等。半球的体积相等。探究球球1 1V=V=2 23 32 2=R R3 33 3球球4 4V=V=R R3 3RROORR22221 1 RR-RR-RRRR3 3第一步:分割
23、第一步:分割O O球面被分割成球面被分割成n n个网格,个网格,表面积分别为:表面积分别为:nSSSS.321,则球的表面积:则球的表面积:nSSSSS.321则球的体积为:则球的体积为:设设“小锥体小锥体”的体积为:的体积为:iViVnVVVVV.321iSO O知识点三、球的表面积和体积知识点三、球的表面积和体积(O O第二步:求近似和第二步:求近似和O Oih由第一步得:由第一步得:nVVVVV.321nnhShShShSV31313131332211.iiihSV31iSiV第三步:转化为球的表面积第三步:转化为球的表面积RSVii31 如果网格分的越细如果网格分的越细,则则:RSRS
展开阅读全文