湖北省十堰市2022-2023学年高三上学期元月调研考试数学试题.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湖北省十堰市2022-2023学年高三上学期元月调研考试数学试题.docx》由用户(523738114@qq.com)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 十堰市 2022 2023 学年 上学 元月 调研 考试 数学试题 下载 _考试试卷_数学_高中
- 资源描述:
-
1、十堰市2023年高三年级元月调研考试数学本试卷共4页,22题,均为必考题。全卷满分150分。考试用时120分钟。祝考试顺利注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡和试卷指定位置上,并将考号条形码贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷、草稿纸上无效。3.非选择题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。4.考生必须保持答题卡的整洁。考试结束后,只交答题卡。一、选择题:本题共8小题,每小题5分,共40分。在每
2、小颗给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则A.B.C.D.2.已知复数,则A.B.C.D.3.“”是“”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.已知直线与双曲线:相交,且有且仅有1个交点,则双曲线的离心率是A.10B.C.D.5.中国居民膳食指南(2022)数据显不,6岁至17岁儿童青少年超重肥胖率高达19.0%.为了解某地中学生的体重情况,某机构从该地中学生中随机抽取100名学生,测量他们的体重(单位:千克),根据测量数据,按,分成六组,得到的频率分布直方图如图所示.根据调查的数据,估计该地中学生体重的中位数是A.50B.52.25
3、C.53.75D.556.已知,且,则的最小值是A.1B.C.2D.7.如图,等边三角形的边长为3,分别交AB,AC于D,E两点,且,将沿DE折起(点A与P重合),使得平面平面BCED,则折叠后的异面直线PB,CE所成角的正弦值为A.B.C.D.8.已知函数若函数恰有4个不同的零点,则的取值范围是A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.如图,在正方体中,则A.平面B.与平面相交C.平面D.平面平面10.已知函数,则A.的定义域是B.的值域是C.是奇函数D.在上单调递减11.
4、2022年9月钱塘江多处发现罕见潮景“鱼鳞潮”,“鱼鳞潮”的形成需要两股涌潮,一股涌潮是波状涌潮,另外一股是破碎的涌潮,两者相遇交叉就会形成像鱼鳞一样的涌潮.若波状涌潮的图象近似函数的图象,而破碎的涌潮的图象近似(是函数的导函数)的图象.已知当时,两潮有一个交叉点,且破碎的涌潮的波谷为-4,则A.B. C.是偶函数D.在区间上单调12.已知抛物线的焦点为F,直线与抛物线交于A,B两点,O为坐标原点,则下列结论正确的是A.若直线OA,OB的斜率之积为-2,则直线过定点B.若直线OA,OB的斜率之积为-2,则面积的最大值是C.若,则的最大值是D.若,则当取得最大值时,三、填空题:本题共4小题,每小
5、题5分,共20分。13.已知向量,若,则_.14.设等比数列的前项和为,写出一个满足下列条件的的公比:_.,是递增数列,.15.盲盒,是指消费者不能提前得知具体产品款式的玩具盒子.已知某盲盒产品共有3种玩偶,小明共购买了5个盲盒,则他恰能在第5次集齐3种玩偶的概率为_.16.若对任意的,都有成立,则的最大值为_.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)设等差数列的前项和为,且,.(1)求的通项公式;(2)若,求数列的前项和.18.(12分)在中,内角A,B,C的对边分别是a,b,c,且.(1)求A;(2)若D是边BC的中点,且,求面积的最大值
6、.19.(12分)如图,在三棱柱中,平面,是等边三角形,D,E,F分别是棱,AC,BC的中点.(1)证明:平面.(2)求平面ADE与平面夹角的余弦值.20.(12分)某校举行围棋比赛,甲、乙、丙三人通过初赛,进入决赛.决赛比赛规则如下:首先通过抽签的形式确定甲、乙两人进行第一局比赛,丙轮空;第一局比赛结束后,胜利者和丙进行比赛,失败者轮空,以此类推,每局比赛的胜利者跟本局比赛轮空者进行下一局比赛,直到一人累计获胜三局,则此人获得比赛胜利,比赛结束.假设每局比赛双方获胜的概率均为,且每局比赛相互独立.(1)求比赛进行四局结束的概率;(2)求甲获得比赛胜利的概率.21.(12分)已知椭圆:的右焦点
展开阅读全文