第3讲 导数与函数的单调性、极值、最值问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第3讲 导数与函数的单调性、极值、最值问题课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3讲 导数与函数的单调性、极值、最值问题课件 导数 函数 调性 极值 问题 课件
- 资源描述:
-
1、第第3讲导数与函数的单调性、极值、最值问题讲导数与函数的单调性、极值、最值问题高考定位利用导数研究函数的性质,能进行简单的计算,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题.真 题 感 悟1.(2020全国卷)函数f(x)x42x3的图象在点(1,f(1)处的切线方程为()A.y2x1 B.y2x1C.y2x3 D.y2x1解析f(1)121,切点坐标为(1,1),又f(x)4x36x2,所以切线的斜率kf(1)4136122,切线方程为y12(x1),即y2x1.故选B.答案B答案13.(2020新高考山东、海南卷)已知函数f(x)aex1ln
2、 xln a.(1)当ae时,求曲线yf(x)在点(1,f(1)处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围.(1)当ae时,f(x)exln x1,f(1)e1,f(1)e1,曲线yf(x)在点(1,f(1)处的切线方程为y(e1)(e1)(x1),即y(e1)x2.(2)当0a1时,f(1)aln a1.当x(0,1)时,f(x)0;当x(1,)时,f(x)0.所以当x1时,f(x)取得最小值,最小值为f(1)1,从而f(x)1.当a1时,f(x)aex1ln xln aex1ln x1.综上,a的取值范围是1,).4.(2020全国卷)已知函数f(x)exax
3、2x.解(1)当a1时,f(x)exx2x,xR,f(x)ex2x1.故当x(,0)时,f(x)0.所以f(x)在(,0)单调递减,在(0,)单调递增.考 点 整 合1.导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0)处的切线的斜率,曲线f(x)在点P处的切线的斜率kf(x0),相应的切线方程为yf(x0)f(x0)(xx0).易错提醒求曲线的切线方程时,要注意是在点P处的切线还是过点P的切线,前者点P为切点,后者点P不一定为切点.2.四个易误导数公式3.利用导数研究函数的单调性(1)导数与函数单调性的关系.f(x)0是f(x)为增函数的充分不必要条件,如函数f(
4、x)x3在(,)上单调递增,但f(x)0.f(x)0是f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f(x)0时,则f(x)为常数函数.(2)利用导数研究函数单调性的方法.若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f(x)0或f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f(x)0,则f(x0)为函数f(x)的极小值.(2)设函数yf(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得.易错提醒若函数的导数存在,某点的导数等于零是函数在该点取得极值的必要不充分条件.热点一导数
5、的几何意义【例1】(1)(2019全国卷)已知曲线yaexxln x在点(1,ae)处的切线方程为y2xb,则()A.ae,b1 B.ae,b1C.ae1,b1 D.ae1,b1解析(1)因为yaexln x1,所以ky|x1ae1,所以曲线在点(1,ae)处的切线方程为yae(ae1)(x1),即y(ae1)x1.(2)直线y2x的斜率为k2,A中,若f(x)2ex2,则由f(x)2ex2,得x0,f(0)0,因为点(0,0)在直线y2x上,所以直线y2x与曲线y2ex2相切.B中,若f(x)2sin x,则由f(x)2cos x2,得x2k(kZ),f(2k)0,因为点(0,0)在直线y2
展开阅读全文