微积分英文课件 .ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分英文课件 .ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分英文课件 微积分 英文 课件
- 资源描述:
-
1、00lim()()xxf xf xExample224422322 231lim(2)323 22xxxfxx 一、is continuous at0 x()f xLimitsa.0000,0,1,0,0.0二b.00311lim1xxxExample22limxaxaxaxa301tan1 sinlimxxxxc.1sinlim0 xxx0tan6limsin2xxx00Examplelim2 sin(0)2nnnxx221sinlim21xxxxsinlim0 xxx01lim sin0 xxxd.11021lim21xxxExamplelim1xxxxx3sinlim32cosxxxxx
2、e.Example2lim()xxxx111lim()ln1xxxlim(ln)xxxlnlimxxxxExamplelim()xxxxxf.0Example12sinlim2xxxxg.exxx )11(lim13101tanlim()1 sinxxxxExample3lim()6xxxx1limtan()4nnn232limcos11xxxxxj.Examplek.Example40162lim(16)hhfhsinlim0 xxx20limsin0 xxx4)(xxf)sin1(sinlim)1(xxxxxsin1sin)1(21cos21sin2xxxx21cos)1(21sin2xx
3、xx无穷小有界机动 目录 上页 下页 返回 结束 Exampleexists?If so,find the value of and the value of the limit.133lim222xxaaxxxaIs there a number such thatSolutionBecausea0)1(lim22xxxaaaxxx15)33(lim22ExampleIf we know that the limit015a133lim222xxaaxxxdoes not exist,it follows that the value of must be 0,namely,a1515aso
4、 1)2)(1()2)(3(3lim1315153lim133lim2222222xxxxxxxxxxaaxxxxxTrue or false1.4442828lim()limlim4444xxxxxxxxx2.2212211lim(67)67lim56lim(56)xxxxxxxxxxx3.12211lim(3)3lim24lim(24)xxxxxxxxx4.If5.5lim()0 xf x5lim()0,xg xthen does not exist。5()lim()xf xg xIf5lim()xf x 5lim(),xg x then does not exist。5()lim()xf
5、 xg xTrue or falseandand6.If exists,7.2lim()()xf x g xThen the limit must be 。If0lim()xf x 0lim(),xg x then0lim()()0.xf xg x(2)(2)fglimxxxExampleTrue or falseand8.If exists9.2lim()xafxthen exists。If(1)0(3)0,fand fthen there exists a number between 1 and 3 such that clim()xaf x()0.f c True or false10
6、.If()1f xfor all xand0lim()xf xthen0lim()1.xf xTrue or falseexists,三、Choose the best answer for each of the Following,322sin3lim0 xkxx1.Ifthenk=_.,1)1(lim10ekxxx2.Ifthenk=_.94.32.23.1.DCBA2.2.1.1.DCBA四、四、Fill in the blanks:sin1.lim()xxxxe0112.lim(sinsin2)2xxxxx03.lim12xxx104.limxxeExample If)(xf,2)c
7、os1(xxa0 x,10 x,)(ln2xb0 xis continuous at x=0,then a=,b=.20)cos1(lim)0(xxafx2a)(lnlim)0(20 xbfxblnbaln122e机动 目录 上页 下页 返回 结束)1)()(xaxbexfx,0 xFind a and b.机动 目录 上页 下页 返回 结束 Example Ifhas an infinite discontinuity at,1xand has a removable discontinuity at0 xSolution)1)(lim0 xaxbexxbexaxxx)1)(lim0ba10
8、1,0ba,1x)1(lim1xxbexxSo,does not exist.0)(lim1bexxeebxx1lim机动 目录 上页 下页 返回 结束 Because has an infinite discontinuity at ,soBecause has a removable discontinuity atffExample Find a,b,such that0)1(lim33bxaxx0)1(lim313xbxxa0)1(lim33bxaxx机动 目录 上页 下页 返回 结束 SolutionSincethus01lim33xbxaxx331xy,01a,1a)1(lim33
展开阅读全文