书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型平面向量在三角形中的应用讲稿课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4730422
  • 上传时间:2023-01-05
  • 格式:PPT
  • 页数:19
  • 大小:652.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《平面向量在三角形中的应用讲稿课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    平面 向量 三角形 中的 应用 讲稿 课件
    资源描述:

    1、【考纲要求考纲要求】1 1、理解向量的概念,掌握向量的几何表示,了解共线、理解向量的概念,掌握向量的几何表示,了解共线 向量的概念向量的概念.2 2、掌握向量的加法和减法、掌握向量的加法和减法.3 3、掌握实数与向量的积,理解两个平面向量共线的充、掌握实数与向量的积,理解两个平面向量共线的充 要条件要条件.4 4、了解平面向量的基本定理,理解平面向量的坐标概、了解平面向量的基本定理,理解平面向量的坐标概 念,掌握平面向量的坐标运算念,掌握平面向量的坐标运算.平面向量在三角形中的应用平面向量在三角形中的应用【教材重点、难点教材重点、难点】重点:向量的加(减)法与共线向量的充要条件重点:向量的加(

    2、减)法与共线向量的充要条件难点:平面向量基本定理的灵活应用难点:平面向量基本定理的灵活应用1().2OPOAOB 课本基础知识的延伸:课本基础知识的延伸:1.1.线段中点的向量表达式:若线段中点的向量表达式:若P为线段为线段AB的中点,则的中点,则(1).OPOAOB 其中2.2.若点若点P,A,B共线,则共线,则12,e e 1 1220ee 120.4.4.若若不共线,不共线,则,则0.GAGBGC 3.3.若若G为为ABC的重心,则的重心,则反之亦然反之亦然.ABC|,OAOBOC 0,NANBNC PA PBPB PCPC PA ABC例例1.(09宁夏、海南)宁夏、海南)已知已知O,

    3、N,P在在所在平面内,且所在平面内,且,则点,则点O,N,P依次是依次是的(的()A A重心重心 外心外心 垂心垂心 B B重心重心 外心外心 内心内心 C C外心外心 重心重心 垂心垂心 D D外心外心 重心重心 内心内心 C,()0PA PBPB PCPAPCPB 0,PB ACPBAC|OAOBOC ABC解:由解:由知,知,O为为的外心;的外心;,PABC PCAB同理同理ABC 为为的内心的内心0NANBNC ABC知,知,N为为的重心;的重心;由由典型例题典型例题O222222OABCOBCAOCAB O1.1 在同一平面上,有在同一平面上,有ABC及一点及一点满足关系式满足关系式

    4、,则,则A内心内心B垂心垂心C外心外心D重心重心是是ABC的(的()变式训练:变式训练:()|ABACOPOAABAC (0,)1.2 已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的()A内心内心B垂心垂心C外心外心D重心重心()|sin|sinABACOP OAABBACC (0,)1.3已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,A内心内心 B垂心垂心C外心外心D重心重心,则动点,则动点P的轨迹的轨迹一定通过一定通过ABC的(的()O222222OABCOBCAOCA

    5、B O1.1 在同一平面上,有在同一平面上,有ABC及一点及一点满足关系式满足关系式,则,则A内心内心B垂心垂心C外心外心D重心重心是是ABC的(的()OCAB2222OABCOBCA 解:由解:由2222OAOCOBOBOAOC 即:即:()0OCOBOAOC AB 化简有:化简有:,OABC OBAC同理有:同理有:OABC为为的垂心的垂心.B变式训练:变式训练:()|ABACOPOAABAC (0,)1.2 已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的()A内心内心B垂心垂心C外心外心D重心重心解:

    6、由已知解:由已知()|ABACAPABAC 所以动点所以动点P的轨迹一定通过的轨迹一定通过ABC的内心的内心.A变式训练:变式训练:ABCDEFP()|sin|sinABACOP OAABBACC (0,)1.3已知已知O是是ABC所在平面内的一定点,动点所在平面内的一定点,动点P满足满足,A内心内心 B垂心垂心C外心外心D重心重心,则动点,则动点P的轨迹的轨迹一定通过一定通过ABC的(的()|sin|sinABBACC 解:由正弦定理知:解:由正弦定理知:()|sin|sinABACOP OAABBACC 又又()|sinAPAB ACABB 所以所以故点故点P轨迹通过轨迹通过ABC的重心的

    7、重心D变式训练:变式训练:ABCDPABC)(OCOBOAmOHm的外接圆的圆心为的外接圆的圆心为O,两条边上的高的交点为,两条边上的高的交点为H,则实数,则实数 OCOBOAOH解法一:解法一:特例法特例法ABC为一个直角三角形,则为一个直角三角形,则O点斜边的中点,点斜边的中点,设设顶点,这时有顶点,这时有H点为直角点为直角,1.m 高考真题再现,DAAB CHABAHDCOHOAAHOAOBOC 解法二:解法二:连连BO延长交延长交 O于于D,连,连AD、CD.CHDA同理,同理,AHDC,DCDOOCOBOC 又又OHABDC 四边形四边形AHCD为平行四边形为平行四边形CAHBOAB

    8、COGH三角形的欧拉线:三角形的欧拉线:外心外心O、重心、重心G、垂心、垂心H三点共线且三点共线且OG=GH123()3OGOHm OAOBOCmOG 5121,3PACABCSS512PBCABCPACPABABCSSSSSACBDPENM解法一:利用平面向量基本定理解法一:利用平面向量基本定理ACABAP4131ABCPBCSS例例2.设设P为为ABC内一点,且满足内一点,且满足,则,则14PABABCSS典型例题典型例题ACABAP41311113()3434APABACABAC 11313344PABABDABCABCSSSS44141313333343PACPADABDABCABCS

    9、SSSS512PBCABCPACPABABCSSSSS法二:法二:构造三角形的重心构造三角形的重心34ADAC 取点取点D使得使得则点则点P为为ABD的重心的重心,连接,连接BD,P DABCACABAP4131ABCPBCSS例例2.设设P为为ABC内一点,且满足内一点,且满足,则,则512变式训练:变式训练:032PCPBPAACPBCPABP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为ABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2 设设O为为ABC内一点,记内一点,记,则则变式训练:变式训练:032PCPBPAACPBCPA

    10、BP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为3:1:2解法一:利用平面向量基本定理解法一:利用平面向量基本定理1132APABAC 得得 032PCPBPA由由1,3PACABCSS12PABABCSS111(1)326PBCABCABCSSS111:3:1:2263ABPPBCACPSSS230PAPBPC ACPBCPABP,2.1 已知已知P为为ABC内一点,且满足内一点,且满足,则,则面积之比为面积之比为法二:构造三角形及重心法二:构造三角形及重心2PBPB 3PCPB 0PAPBPC 则则P为的重心为的重心.AB C1,2PABPABSS

    11、16PBCPB CSS13PACPACSS令令111:3:1:2263ABPPBCACPSSS013103OAOBOCOAOBOC 解法一:特例法取解法一:特例法取O为为ABC的重心,则的重心,则ABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2 设设O为为ABC内一点,记内一点,记,则则变式训练:变式训练:ADAEAOADAEABACABAC 0OAOBOC BODEABCABOABCCAOABCBCOSSSSSS,OCOBOA2.2设设O为为ABC内一点,记内一点,记,则则()ABACOBOCOA 1r由题知由题知,CAOABOABCABCSSADAESABSAC法二:法

    12、二:过过O分别作分别作、的平行线的平行线OD、OE,交交于于D,交,交于于E,则,则00.OAOBOC ,ABCSBCOCAOABOSSS,引申:引申:设设O为为ABC内一点,内一点,记记=m,则则分别为分别为 2、已知、已知A、B、C是平面上不共线的三点,是平面上不共线的三点,O为平面为平面ABC内内1(1)(1)(12),()3OPOAOBOCR A内心内心 B垂心垂心C外心外心D重心重心任一点,动点任一点,动点P满足等式满足等式则动点则动点P的轨迹一定通过的轨迹一定通过ABC的(的()bACaAB,bnAQamAP,nm113、已知、已知G为为ABC的重心,令的重心,令点点G分别交分别交AB,AC于于P,Q两点,且两点,且,则,则,若,若PQ过过0543OCOBOAC 4、ABC外接圆的圆心为外接圆的圆心为O,且,且,则角,则角,a b c0aOAbOBcOC 1、ABC中三边长分别为O为ABC所在平面内一点,若A 外心 B内心C重心D垂心,则O为ABC的()课后作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:平面向量在三角形中的应用讲稿课件.ppt
    链接地址:https://www.163wenku.com/p-4730422.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库