学习视频课件Structured SVM.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《学习视频课件Structured SVM.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学习视频课件Structured SVM 学习 视频 课件 Structured
- 资源描述:
-
1、Structured Support Vector MachineHung-yi LeeStructured Learning We need a more powerful function f Input and output are both objects with structures Object:sequence,list,tree,bounding box X is the space of one kind of object Y is the space of another kind of object YXf:Unified Framework Find a funct
2、ion F F(x,y):evaluate how compatible the objects x and y isStep 1:Training Given an object xStep 2:Inference(Testing)R:FYXyxFyYy,maxargThree Problems What does F(x,y)look like?Problem 1:Evaluation How to solve the“arg max”problemProblem 2:Inference Given training data,how to find F(x,y)Problem 3:Tra
3、iningyxFyYy,maxargExample Task:Object DetectionSource of image:http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.6007&rep=rep1&type=pdfhttp:/www.vision.ee.ethz.ch/hpedemo/gallery.phpKeep in mind that what you will learn today can be applied to other tasks.Example TaskProblem 1:Evaluation F
4、(x,y)is linear Open question:What if F(x,y)is not linear?Problem 2:Inference=1.1=8.2=0.3=10.1=-1.5=5.6maxProblem 2:Inferencehttp:/ 3:TrainingNN2211,yxyxyxTraining data:PrincipleWe should find F(x,y)such that 11,Fyxyx,F11 yy for all22,Fyxyx,F22 yy for allNN,Fyxyx,FNN yy for allLets ignore problems 1
5、and 2 and only focus on problem 3 today.OutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCu
6、tting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseAssumption:Separablew 11,yxyx,122,yxyx,2yxwyxw,111yxwyxw,222Structured PerceptronNN2211,yxyxyxnnyx,yxwynYyn,maxargnnnnyxyxww,nnyy(problem 2)We are done!Warning of Math:marginNot rela
7、ted to the space of y!Proof of Terminationnnnnkkyxyxww,112100kkwwwwww is updated once it sees a mistake(the relation of wk and wk-1)yxwyxwnnn,nyYy(All incorrect label for an example)n(All training examples)Remind:we are considering the separable caseProof of Terminationnnnnkkyxyxww,112100kkwwwwwnnnn
8、kkyxyxwwww,1nnnnkyxwyxwww,11kwww is updated once it sees a mistake Proof that:The angle k between and wk is smaller as k increasesw(the relation of wk and wk-1)Analysis kcos(larger and larger?)(Separable)kkkwwwwcosProof of Termination1kkwwwwProof that:The angle k between and wk is smaller as k incre
9、asesw Analysis kcos(larger and larger?)kkkwwwwcos01wwww12wwwwkwwk.1 ww22ww.(so what)12100kkwwwwww is updated once it sees a mistake(the relation of wk and wk-1)=0nnnnkkyxyxww,1Proof of Termination212,nnnnkkyxyxwwnnnnknnnnkyxyxwyxyxw,2,1221221Rkw22Rkwk0?0(mistake)Assume the distance between any two f
10、eature vectors is smaller than R22021R ww2R22122R ww2R2kkkwwwwcosnnnnkkyxyxww,1Proof of Termination22Rkwkkwwk2kRkRkkkcosRk1cosk1Rk2RkkkkwwwwcosEnd of Warning:marginNot related to the space of y!How to make training fast?2RkMargin:Is it easy to separable red points from the blue onesNormalizationnnyx
11、,yxn,All feature times 2RLarger margin,less updateThe largest distances between featuresOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseNon-separable Case When
12、 the data is non-separable,some weights are still better than the others.Defining Cost Function Define a cost C to evaluate how bad a w is,and then pick the w minimizing the cost CWhat is the minimum value?Other alternatives?(Stochastic)Gradient Descent(Stochastic)Gradient descent:When w is differen
13、t,the y can be different.Space of w(Stochastic)Gradient DescentFor t=1 to T:Update the parameters T timesstochasticLocate the regionsimpleOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-s
14、eparable caseSeparable caseBased on what we have considered.Treat all incorrect y equallyThe right case is better.very bad!acceptableConsidering the incorrect onesClose to correct boxDifferent from correct boxsmallerlargerHow to measure the differenceDefining Error Function(0)Another Cost Functionma
展开阅读全文