书签 分享 收藏 举报 版权申诉 / 74
上传文档赚钱

类型学习视频课件Structured SVM.pptx

  • 上传人(卖家):晟晟文业
  • 文档编号:4729966
  • 上传时间:2023-01-05
  • 格式:PPTX
  • 页数:74
  • 大小:3.47MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《学习视频课件Structured SVM.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    学习视频课件Structured SVM 学习 视频 课件 Structured
    资源描述:

    1、Structured Support Vector MachineHung-yi LeeStructured Learning We need a more powerful function f Input and output are both objects with structures Object:sequence,list,tree,bounding box X is the space of one kind of object Y is the space of another kind of object YXf:Unified Framework Find a funct

    2、ion F F(x,y):evaluate how compatible the objects x and y isStep 1:Training Given an object xStep 2:Inference(Testing)R:FYXyxFyYy,maxargThree Problems What does F(x,y)look like?Problem 1:Evaluation How to solve the“arg max”problemProblem 2:Inference Given training data,how to find F(x,y)Problem 3:Tra

    3、iningyxFyYy,maxargExample Task:Object DetectionSource of image:http:/citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.6007&rep=rep1&type=pdfhttp:/www.vision.ee.ethz.ch/hpedemo/gallery.phpKeep in mind that what you will learn today can be applied to other tasks.Example TaskProblem 1:Evaluation F

    4、(x,y)is linear Open question:What if F(x,y)is not linear?Problem 2:Inference=1.1=8.2=0.3=10.1=-1.5=5.6maxProblem 2:Inferencehttp:/ 3:TrainingNN2211,yxyxyxTraining data:PrincipleWe should find F(x,y)such that 11,Fyxyx,F11 yy for all22,Fyxyx,F22 yy for allNN,Fyxyx,FNN yy for allLets ignore problems 1

    5、and 2 and only focus on problem 3 today.OutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCu

    6、tting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseAssumption:Separablew 11,yxyx,122,yxyx,2yxwyxw,111yxwyxw,222Structured PerceptronNN2211,yxyxyxnnyx,yxwynYyn,maxargnnnnyxyxww,nnyy(problem 2)We are done!Warning of Math:marginNot rela

    7、ted to the space of y!Proof of Terminationnnnnkkyxyxww,112100kkwwwwww is updated once it sees a mistake(the relation of wk and wk-1)yxwyxwnnn,nyYy(All incorrect label for an example)n(All training examples)Remind:we are considering the separable caseProof of Terminationnnnnkkyxyxww,112100kkwwwwwnnnn

    8、kkyxyxwwww,1nnnnkyxwyxwww,11kwww is updated once it sees a mistake Proof that:The angle k between and wk is smaller as k increasesw(the relation of wk and wk-1)Analysis kcos(larger and larger?)(Separable)kkkwwwwcosProof of Termination1kkwwwwProof that:The angle k between and wk is smaller as k incre

    9、asesw Analysis kcos(larger and larger?)kkkwwwwcos01wwww12wwwwkwwk.1 ww22ww.(so what)12100kkwwwwww is updated once it sees a mistake(the relation of wk and wk-1)=0nnnnkkyxyxww,1Proof of Termination212,nnnnkkyxyxwwnnnnknnnnkyxyxwyxyxw,2,1221221Rkw22Rkwk0?0(mistake)Assume the distance between any two f

    10、eature vectors is smaller than R22021R ww2R22122R ww2R2kkkwwwwcosnnnnkkyxyxww,1Proof of Termination22Rkwkkwwk2kRkRkkkcosRk1cosk1Rk2RkkkkwwwwcosEnd of Warning:marginNot related to the space of y!How to make training fast?2RkMargin:Is it easy to separable red points from the blue onesNormalizationnnyx

    11、,yxn,All feature times 2RLarger margin,less updateThe largest distances between featuresOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseNon-separable Case When

    12、 the data is non-separable,some weights are still better than the others.Defining Cost Function Define a cost C to evaluate how bad a w is,and then pick the w minimizing the cost CWhat is the minimum value?Other alternatives?(Stochastic)Gradient Descent(Stochastic)Gradient descent:When w is differen

    13、t,the y can be different.Space of w(Stochastic)Gradient DescentFor t=1 to T:Update the parameters T timesstochasticLocate the regionsimpleOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-s

    14、eparable caseSeparable caseBased on what we have considered.Treat all incorrect y equallyThe right case is better.very bad!acceptableConsidering the incorrect onesClose to correct boxDifferent from correct boxsmallerlargerHow to measure the differenceDefining Error Function(0)Another Cost Functionma

    15、rginmarginGradient DescentIn each iteration,Oh no!Problem 2.1Another Viewpoint Minimizing the new cost function is minimizing the upper bound of the errors on training setIt is hard!upper bound Another ViewpointMore Cost FunctionsMargin rescaling:Slack variable rescaling:OutlineBeyond Structured SVM

    16、(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseRegularizationKeep the incorrect answer from a margin depending on errorsw close to zero can minimize the influence of mismatch.Training da

    17、ta and testing data can have different distribution.Regularization:Find the w close to zeroRegularizationIn each iteration,Weight decay as in DNNOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering Erro

    18、rsNon-separable caseSeparable caseStructured SVMAre they equivalent?We want to minimize CStructured SVMSlack variableStructured SVM=0=0It is possible that no w can achieve this.marginmarginmarginStructured SVM-Intuition(lots of inequalities)slack variablemarginmarginStructured SVM-Intuition(lots of

    19、inequalities)MinimizeTraining data:(lots of inequalities)(lots of inequalities)Structured SVM-IntuitionStructured SVMToo many constraints Solve it by the solver in SVM packageQuadratic Programming(QP)ProblemOutlineBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm

    20、for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseSource of image:http:/ Plane AlgorithmParameter spaceColor is the value of C which is going to be minimized:Solution without constraintsSolution with constraintsImage credit:Yisong YueCutting Plane Algori

    21、thmParameter spaceGreen line:Remove this constraint will not influence the solutionRed lines:determine the solutionAlthough there are lots of constraints,most of them do not influence the solution.working setImage credit:Yisong YueCutting Plane Algorithm obtain solution wSolve a QP problemRepeatedly

    22、Cutting Plane AlgorithmNo constraint at allSolving QPThe solution w is the blue point.Image credit:Yisong YueCutting Plane AlgorithmThere are lots of constraints is violatedFind the most violated oneSuppose it is the constraint from yExtent the working setyImage credit:Yisong YueCutting Plane Algori

    23、thmImage credit:Yisong YueFind the most violated oneConstraint:Violate a Constraint:Degree of ViolationThe most violated one:Cutting Plane AlgorithmGiven training data:RepeatFind,1 minimizing QP:Cutting Plane Algorithmfind the most violated constraintsGiven training data:RepeatTraining data:Find,1,2

    24、 minimizing QP:There is no constraintTraining data:=1.0=1.0=1.0=0.25=0.90=0.88Training data:Find,1,2 minimizing QP:Training data:=-0.99=-1.10=1.01=1.25=0.97=1.55,Training data:Find,1,2 minimizing QP:,The process repeats iterativelyConcluding RemarksBeyond Structured SVM(open question)Multi-class and

    25、 binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseMulti-class SVMMulti-class SVM Problem 2:Inference The number of classes are usually small,so we can just enumerate them.Multi-class SVM Problem 3:Training Some types of

    26、 misclassifications may be worse than others.(defined as your wish)There are only N(K-1)constraints.Binary SVM Set K=2=1If y=1:If y=2:Concluding RemarksBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering Erro

    27、rsNon-separable caseSeparable caseBeyond Structured SVMDNNStructured SVMRef:Hao Tang,Chao-hong Meng,Lin-shan Lee,An initial attempt for phoneme recognition using Structured Support Vector Machine(SVM),ICASSP,2010Shi-Xiong Zhang,Gales,M.J.F.,Structured SVMs for Automatic Speech Recognition,in Audio,S

    28、peech,and Language Processing,IEEE Transactions on,vol.21,no.3,pp.544-555,March 2013Beyond Structured SVM Jointly training structured SVM and DNNDNNStructured SVMjointly trainedRef:Shi-Xiong Zhang,Chaojun Liu,Kaisheng Yao,and Yifan Gong,“DEEP NEURAL SUPPORT VECTOR MACHINES FOR SPEECH RECOGNITION”,In

    29、terspeech 2015Beyond Structured SVM Replacing Structured SVM with DNNDNNDNNjointly trainedRef:Yi-Hsiu Liao,Hung-yi Lee,Lin-shan Lee,Towards Structured Deep Neural Network for Automatic Speech Recognition,ASRU,2015http:/speech.ee.ntu.edu.tw/tlkagk/paper/DNN_ASRU15.pdfConcluding RemarksBeyond Structured SVM(open question)Multi-class and binary SVMCutting Plane Algorithm for Structured SVMStructured SVMRegularizationConsidering ErrorsNon-separable caseSeparable caseAcknowledgement 感謝 盧柏儒 同學於上課時發現投影片上的錯誤 感謝 徐翊祥 同學於上課時發現投影片上的錯誤

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:学习视频课件Structured SVM.pptx
    链接地址:https://www.163wenku.com/p-4729966.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库