人教版九年级上册数学2214二次函数的图像和性质课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级上册数学2214二次函数的图像和性质课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 上册 数学 2214 二次 函数 图像 性质 课件 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、九年级数学上册九年级数学上册22.1.4 二次函数二次函数y=ax2+bx+c的图象的图象和性质和性质第一课时第二课时第一课时返回y=a(x-h)2+k(a0)a0a0开口方向开口方向顶点坐标顶点坐标对称轴对称轴增减性增减性极值极值向上向上向下向下(h,k)(h,k)x=hx=h当当xh时时,y随着随着x的增大而增大的增大而增大.当当xh时时,y随着随着x的增大的增大而减小而减小.x=h时时,y最小值最小值=kx=h时时,y最大值最大值=k抛物线抛物线y=a(x-h)2+k(a0)的图象可由的图象可由y=ax2的图象通过上下的图象通过上下和左右平移得到和左右平移得到.回顾旧知回顾旧知二次函数二
2、次函数y=a(x-h)2 2+k的性质的性质 我们我们已经知道二次函数已经知道二次函数y=a(x-h)2+k的图象的图象和性质,能否利用这些知识来讨论二次函数和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质图象和性质?导入新知导入新知素养目标素养目标3.能能根据所给的自变量的取值范围画二次函根据所给的自变量的取值范围画二次函数的图象数的图象.1.会会用配方法或公式法将一般式用配方法或公式法将一般式yax2bxc化成顶点式化成顶点式y=a(x-h)2+k.2.能能熟练求出二次函数一般式熟练求出二次函数一般式yax2bxc的顶点坐标、对称轴的顶点坐标、对称轴.画出二次函数画出
3、二次函数y=ax2+bx+c的图象的图象 我们我们已经已经知道知道y=a(x-h)2+k的图象和性质,能的图象和性质,能否利用这些知识来讨论否利用这些知识来讨论 的图的图象和性质?象和性质?2162 12yxx【思考【思考1】怎样怎样将将 化成化成y=a(x-h)2+k的形式?的形式?216212yxx探究新知探究新知知识点 1216212yxx配方可得2221(126642)2xx21(1242)2xx2221(126)6422xx21(6)62x21(6)3.2x想一想:配方的方法及步骤是什么?探究新知探究新知怎样将怎样将 化成化成y=a(x-h)2+k的形式?的形式?216212yxx配
4、方配方216212xxy你知道是怎样配方的吗?你知道是怎样配方的吗?(1)“(1)“提提”:提出二次项系数;提出二次项系数;(2 2)“配配”:括号内配成完全平方;括号内配成完全平方;(3 3)“)“化化”:化成顶点式化成顶点式.【提示】【提示】配方后的表达式通常称配方后的表达式通常称为为配方式配方式或或顶点式顶点式.3)6(212xy探究新知探究新知【思考【思考2】你能你能说出说出 的对称轴及顶点坐标吗?的对称轴及顶点坐标吗?21(6)32yx答:答:对称轴是直线对称轴是直线x=6,顶点坐标是(顶点坐标是(6,3).【思考【思考3】二次函数二次函数 可以看作是可以看作是由由 怎样怎样平移得到
5、的?平移得到的?21(6)32yx212yx答:答:平移方法平移方法1:先向上平移先向上平移3个单位,再向右平移个单位,再向右平移6个单位得到的;个单位得到的;平移方法平移方法2:先向右平移先向右平移6个单位,再向上平移个单位,再向上平移3个单位得到的个单位得到的.探究新知探究新知【思考【思考4】如何画如何画二次函数二次函数 的图象?的图象?216212yxx9876543x1.利用图形的对称性列表利用图形的对称性列表21(6)32yx7.553.533.557.5510 xy5102.然后描点画图,然后描点画图,得到得到图象图象如右图如右图.O方法一:描点法方法一:描点法探究新知探究新知方法
6、二:平移法方法二:平移法212yx268y4O-22x4-468216212y-x-x探究新知探究新知268y4O-22x4-468方法二:描点法方法二:描点法216212y-x-x先利用对称性列表先利用对称性列表:21632-x-()216212y-x-x开口方向:开口方向:对称轴:对称轴:顶点:顶点:向上向上x=6(6,3)探究新知探究新知【思考【思考4】结合结合二次函数二次函数 的图象,说出其的图象,说出其性质性质.216212yxx510 xy510 x=6当当x6时,时,y随随x的增大而增大的增大而增大.O探究新知探究新知开口方向:开口方向:对称轴:对称轴:顶点:顶点:向上向上x=6
7、(6,3)例例1 画出函数画出函数 的的图象,并说明这个函图象,并说明这个函数具有哪些性质数具有哪些性质.21522yxx x-2-101234y-6.5-4-2.5-2-2.5-4-6.5解解:函数函数 通过配方可通过配方可得得 ,先列表先列表:21522yxx 21(1)22yx 画二次函数画二次函数y=ax2+bx+c的图象并且说出它的的图象并且说出它的性质性质素养考点素养考点 1探究新知探究新知2xy-204-2-4-4-6-8然后描点、连线,然后描点、连线,得到图象如下图:得到图象如下图:由图象可知,这个函数具有如下性质:由图象可知,这个函数具有如下性质:开口方向:开口方向:向下向下
8、顶点坐标:顶点坐标:(1,-2)对称轴:对称轴:x=1最值:最值:x=1时,时,y最大值最大值=-2当当x1时,函数值时,函数值y随随x的增大而增大;的增大而增大;当当x1时,函数值时,函数值y随随x的增大而减小;的增大而减小;当当x=1时,函数取得最大值,最大值时,函数取得最大值,最大值y=-2.探究新知探究新知 求求二次函数二次函数y=2x2-8x+7图象的对称轴和图象的对称轴和顶点坐标顶点坐标.2287yxx22(44)87xx 22(4)7xx22(2)1.x因此,二次函数因此,二次函数y=2x2-8x+7图象的图象的对称轴是直对称轴是直线线x=2,顶点坐标为,顶点坐标为(2,-1).
9、解:解:巩固练习巩固练习变式题变式题1 二次函数二次函数y=ax2+bx+c 的图象与性质的图象与性质 根据根据下列关系你能发现二次函数下列关系你能发现二次函数y=ax2+bx+c的图象的图象和性质吗?和性质吗?y=ax2+bx+c224()24bacba xaa 探究新知探究新知知识点 2y=ax2+bx+c224()24bacba xaa 二次函数二次函数的顶点式的顶点式224()24bacba xaay 。显显然然,二二次次函函数数的的顶顶点点坐坐标标为为对称轴为对称轴为 .二次函数的二次函数的一般表达式一般表达式因此,抛物线的对称轴是因此,抛物线的对称轴是 ,顶点是,顶点是 .2bxa
10、 2bxa 24,24bacbaa 24,24bacbaa 探究新知探究新知yOx2yxbxca2bxa (a0)yOx2yxbxca2bxa (a1可得可得2ab0,故故正确;正确;利用二次函数利用二次函数y=ax2+bx+c的图象确定字母的值的图象确定字母的值素养考点素养考点 3探究新知探究新知变式题变式题3 二次函数二次函数y=ax+bx+c的图象如图所示,下的图象如图所示,下列选项中正确的是(列选项中正确的是()Aa0 Bb0 Cc0 D ac0巩固练习巩固练习解析解析 根据开口方向、对称轴、抛物线与根据开口方向、对称轴、抛物线与y轴的交点,确定轴的交点,确定a、b、c的符号,的符号,
11、根据对称轴和图象确定根据对称轴和图象确定y0或或y0时时,x的范围,确定代数式的符号的范围,确定代数式的符号开口向下开口向下,a0,A错误;错误;对称轴在对称轴在y轴的右侧和轴的右侧和a0,可知可知b0,B正确正确;抛物线与抛物线与y轴交于正半轴轴交于正半轴,c0,C错误错误;因为因为a0,所以所以ac0,D错误错误B (2018中考中考)如图是二次函数)如图是二次函数y=ax2+bx+c(a,b,c是常数,是常数,a0)图象的一部分,与)图象的一部分,与x轴的交点轴的交点A在点(在点(2,0)和()和(3,0)之)之间,对称轴是间,对称轴是x=1对于下列说法:对于下列说法:ab0;2a+b=
12、0;3a+c0;a+bm(am+b)()(m为实数)为实数);当当1x3时时,y0,其中正确的是(),其中正确的是()A B C D解析解析 由图象开口向下,可知由图象开口向下,可知a0,有对称轴在,有对称轴在y轴右侧,可知轴右侧,可知b0,即,即ab0,故正确,由对称轴故正确,由对称轴x=1得:得:=1,即,即2a+b=0,故正确,当故正确,当x=3时,时,y0,即,即9a+3b+c0,b=-2a,3a+c0,故不正确,当故不正确,当x=1时,函数有最大值时,函数有最大值a+b+c,当,当x=m时,时,y=am2+bm+c,即,即a+b+cam2+bm+c,也就是也就是a+bm(am+b),
13、故正故正确,由图象知:当确,由图象知:当-1x3时,时,y有可能小于有可能小于0,故不正确,故不正确.-2ba巩固练习巩固练习A连 接 中 考连 接 中 考1.已知二次函数已知二次函数y=ax2+bx+c的的x、y的部分对应值如下表:的部分对应值如下表:x-10123y51-1-11A.y轴轴 B.直线直线x=C.直线直线x=2 D.直线直线x=则该二次函数图象的对称轴为则该二次函数图象的对称轴为()()D5232课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题Oyx1232.已知已知二次函数二次函数y=ax2+bx+c(a0)的图象的图象如图所示,则下列结论:如图所示,则下列结论:(1)
14、a、b同号同号;(2)当当x=1和和x=3时,函时,函数值相等数值相等;(3)4a+b=0;(4)当当y=2时,时,x的值只的值只能取能取0;其中其中正确的是正确的是.(2)课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题3.如如图是二次函数图是二次函数y=ax2+bx+c(a0)图象的一部分,图象的一部分,x=-1是对称轴,有下列判断:是对称轴,有下列判断:b-2a=0;4a-2b+cy2.其中其中正确正确的的是(是()23A B C DxyO2x=-1B课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题 根据根据公式确定下列二次函数图象的对称轴公式确定下列二次函数图象的对称轴和顶点坐
15、标:和顶点坐标:22(1)21213;(2)580319;1(3)22;2(4)12.yxxyxxyxxyxx 直线x=33,5直线x=88,1直线x=1.2559,48直线x=0.519,24课堂检测课堂检测能 力 提 升 题能 力 提 升 题1.已知函数已知函数y=-2x2+x-4,当当x=时时,y有最大值有最大值 .2.已知二次函数已知二次函数y=x2-2x+1,那么它的图象大致为那么它的图象大致为()14318 B课堂检测课堂检测拓 广 探 索 题拓 广 探 索 题24(,)24bacbaa2bxa y=ax2+bx+c(a 0)(一般式一般式)(顶点式顶点式)224()24bacby
展开阅读全文