中介作用分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中介作用分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中介 作用 分析 课件
- 资源描述:
-
1、中介作用分析简介基本方法应用实例多重中介作用分析中介作用分析中介变量:如果自变量X通过某一变量M对因变量Y产生一定影响,则称M为X和Y的中介变量或M在X和Y之间起中介作用。研究目的:帮助研究者解释自变量X和因变量Y关系的作用机制,也可以整合已有变量之间的关系。理论假设:中介变量反映了自变量通过它来影响因变量的过程。一、中介作用简介M X Yabc 图1.简单的、标准的三变量中介模型 如图1所示,X是自变量,M是假定的中介变量,Y是因变量。在假定和检验中介作用的研究中,关注点是X对Y的作用是直接的(即XY)还是间接的(通过M起作用,即X M)?间接作用的假设是,变量X有助于预测和解释中介变量M的
2、变化,而这又有助于预测和解释变量Y的变化。Davis(1985:15)曾提到,好的决定因素(如中介作用中的X)可以是“某些稳定的”的特征:如宗教信仰、职业声望、收入、智力、性别等。好的M或Y可以是“相对不稳定的”或易变的变量:如幸福感指标、品牌偏好、态度等。例如:X可以是某种认知需要,M是对广告的态度,Y是购买某种广告商品的可能性。二、基本方法(一)经典的中介作用检验XYc1M X Yabc 图图2.中介变量示意图中介变量示意图23最流行的检验中介作用的方法是Baron和Kenny(1986)年提出的。根据这一方法,需要拟合三个回归方程。假设所有变量都已经中心化(即均值为零),可以用下列方程来
3、描述变量之间的关系,相应的路径图见图2.Y=1+cX+1 M=2+aX+2 Y=3+c X+bM+3方程中的表示截距(一般忽略不计),表示模型的误差项(一般忽略不计),,a、b、c、c 表示回归系数,反映了三个关键变量之间的关系。其中,ab是经过中介变量M的中介效应,c是X对Y的总效应,c是直接效应。如果满足下列条件,则认为中介作用可能存在:(1)回归系数a显著,表明自变量X与中介变量M之间存在线性关系。(2)回归系数c显著,表明自变量X与因变量Y之间存在线性关系。(3)回归系数b显著,意味着中介变量M有助于预测因变量Y,并且显示自变量X对因变量Y的直接作用的 c 与c相比,数值显著变小。(4
4、)c与c的大小是通过z检验来判定的。(Sobel z检验)(5)检验c(直接作用)与c(控制了间接的中介作用之后的直接作用)的差异与检验中介效应ab的强度是否大于0是等价的。即:z=以相关系数推导出路径系数的方程如下:a=rXM b=(1/1-rXM)(rMY-rXMrXY)c=(1/1-rXM)(rXY-rXMrMY)2222abb SSaba(二)中介效应分析方法 依次检验回归系数(最简单)依次检验回归系数a和b,检验统计量t等于回归系数的估计值除以相应的标准误。这种检验的第一类错误率很小,一般都远远小于显著性水平(如0.05)。不足在于中介效应较弱时,检验力并不高。联合检验(原假设是H0
5、:a=0且b=0,同时检验a和b的显著性,检验力比依次检验要高。检验H0:ab=0 目前至少有5种以上的近似计算公式,当样本容量比较大时(如大于500),各种检验的检验力差别不大。比较常用的是Sobel根据一阶Taylor展式得到的近似公式:z z=sab=检验H0:c-c=0 2222baabssa ba bsXMc ccrss22221ccc cXMc cssss sr/c ctc cs(三)温忠麟等提出了一个新的检验中介效应的程序,如下图:(四)中介效应的解释 对于检验结果显著的中介效应,要区分是完全中介效应还是部分中介效应。如果是完全中介效应,则说明自变量对因变量的影响,完全是通过中介
6、变量M而起作用,此时X对Y没有直接影响。如果是部分中介效应,则说明自变量X对因变量Y的影响,有一部分是通过中介变量M起作用,应当报告中介效应的比例,或者报告中介效应与直接效应之比。(五)中介效应的相对大小 中介效应/总效应=中介效应/直接效应=/ab abc/ab c三、多重中介模型(一)定义多重中介模型是指在自变量与因变量之间存在多个中介变量的模型。链式多重中介模型与并行多重中介模型是多重中介模型的基本构成单元。多重中介模型可以分析总的中介效应、特定中介效应和对比中介效应。(二)常见的多重中介模型(1)单变量多重中介模型(根据多个中介变量之间是否存在相互影响划分)并行(单步)多重中介模型:反
7、映的是多个中介变量(不存在相互影响)同时在 自变量和因变量之间起中介作用(见图3)链式(多步)多重中介模型:多个中介变量之间存在相互影响,并且表现顺序性特征,形成中介链。(见图4)复合式多重中介模型:由前两种模型复合而成,既包含并行的多个中介变量也包含串联的多个中介变量。(见图5)(2)多元多重中介模型xM1M2MnxY.图4.链式多重中介模型a3YM2M1x图5.复合式多重中介模型a1a2b1b2cMn-1YMnM1M2.图3.并行多重中介模型x以图5所示的含有两个中介变量M1和M2的多重中介模型为例,此时的多重中介效应分析可以从三个角度入手:总的中介效应:a1b1+a2b2+a1a3b2特
8、定路径的中介效应:a1b1、a2b2和a1a3b2对比中介效应:a1a3b2 a2b2、a1b1 a2b2和a1a3b2 a1b1(三)优势可以得到总的中介效应。可以在控制其他中介变量(如控制M1)的前提下,研究每个中介变量(如M2)的特定中介效应。这种做法可以减少简单中介模型因为忽略其他中介变量而导致的参数估计偏差。可以得到对比中介效应,使得研究者能判断多个中介变量的效应(如a1b1和a2b2)中,哪一个效应更大,即判断哪一个中介变量的作用更强。这样,对比中介效应能使研究者判断多个中介变量理论(如XM1Y 和XM2Y)中,哪个中介变量理论更有意义。(四)多重中介效应的SEM分析程序 确定多重
9、中介模型。由于中介模型是一种验证性模型而不是探索性模型,因此必 须首先根据理论确定自变量、中介变量和因变量,以及变量之间的因果顺序。设置辅助变量。根据第1 步确立的多重中介模型和使用的SEM 软件,设置相应的辅助变量。(LISEL 软件只需要在输入指令“DA”的结尾处加入“AP”选项,MPLUS 软件只需使用“MODELCONSTAINT”命令就可以便利的设置多个辅助变量。通过设置多个辅助变量,使得研究者可以同时得到特定、总的和对比中介效应值,实现完整的多重中介效应分析)偏差校正Bootstrap 的SEM 分析。如果SEM模型的拟合程度可接受,则根据偏差校正Bootstrap得到的中介效应区
10、间估计进行中介效应显著性判断(判断方法是,对要检验的中介效应(如特定中介效应),如果其置信区间不包含零,则相应的中介效应显著);如果SEM 模型的拟合程度不可接受,则停止分析。(五)多重中介分析的Bootstrap方法 定义:Bootstrap 方法是由Efron 最早提出的一种重复抽样方法(resampling methods)。Bootstrap 方法是将原始样本当成Bootstrap 抽样的总体,通过有放回的重复抽样抽取大量Bootstrap 样本并获得统计量的过程,其实质是模拟了从总体中随机抽取大量样本的过程。Bootstrap 方法的唯一要求是原始样本可以反映研究总体,但不需要知道研
11、究总体的具体分布。常用的Bootstrap 方法包括百分位Bootstrap 方法和偏差校正的百分位Bootstrap 方法。国内研究者方杰等认为偏差校正百分位Bootstrap方法优于百分位Bootstrap方法。优势:不需要正态性假设,也不需要大样本,进行中介效应区间(如果区间不包括0,表示中介效应显著)估计时更无需标准误。(六)如何在SEM分析软件中设置Bootstrap AMOS 软件在分析属性(Analysis Properties)Bootstrap 对话框就可以进行Bootstrap 方法的设置,但是AMOS 软件无法同时提供辅助变量的设置。MPLUS 软件在“Analysis”
展开阅读全文