《向量的加法》课件 (北师大版)1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《向量的加法》课件 (北师大版)1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量的加法 北师大版 向量的加法课件 【北师大版】1 向量 加法 课件 北师大
- 资源描述:
-
1、复习回顾:1.向量、平行向量、相等向量的含义分别是什么?2.用有向线段表示向量,向量的大小和方向是如何反映的?什么叫零向量和单位向量?由于大陆和台湾没有直航,因此2006年春节探亲,乘飞机要先从台北到香港,再从香港到上海,则飞机的位移是多少?上海台北香港abc上海 台北 香港 CAB1 1、位移、位移ABBCAC 思考:如图,某人从点A到点B,再从点B改变方向到点C,则两次位移的和可用哪个向量表示?由此可得什么结论?A BCACBCAB 上述分析表明,位移的合成可看作是向量的加法。OFEGEGABEOCF1F2FGOCF1F2F为F1与F2的合力它们之间有什么关系2、力的合成F1F2FF1+F
2、2=F数的加法启发我们,从运算的角度看,AC可以认为是AB与BC的和,F可以认为是F1与F2的和,即位移,力的合成可看作向量的加法.ab作法(1)在平面内任取一点O OAaAB =(2)作 ,bO Bab 作=+(3)AB这种作法叫做向量向量加法的三角形法则加法的三角形法则,abab +已知向量 求作向量还有没有其他的做法?向量加法的三角形法则位移的合成可以看作向量加法三角形法 则 的 物 理 模 型o首尾连首尾连首尾相接首尾相接abABC作法(1)在平面内任取一点OOAa OBb =(2)作 ,O Cab作=+(3)向量加法的平行四边形法则这种作法叫做向量加法的平行四边形法则力的合成可以看作
3、向量加法的平行四边形法则的物理模型o起点起点相同相同连对连对角角 文字表述为:以同一起点的两个向量为邻边作平行四边形,文字表述为:以同一起点的两个向量为邻边作平行四边形,则以公共起点为起点的对角线所对应向量就是和向量。则以公共起点为起点的对角线所对应向量就是和向量。区别与联系区别与联系1.三角形法则要求是首尾连接;而平行四边形三角形法则要求是首尾连接;而平行四边形 法则要求是起点相同。法则要求是起点相同。2.三角形法则适合任意两个非零向量的求和;而三角形法则适合任意两个非零向量的求和;而 平行四边形适合不共线的两个向量的求和。平行四边形适合不共线的两个向量的求和。3.三角形法则也适合多个向量的
4、求和;而平行四三角形法则也适合多个向量的求和;而平行四 边形法则只适合两个向量的求和。边形法则只适合两个向量的求和。向量的加法:向量的加法:三角形法则与平行四边形法则三角形法则与平行四边形法则求两个向量和的方法求两个向量和的方法:AB 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?CDBCAB )(化化简简ABCD练习练习.CDBCAB )(化化简简ABCDCDBCAB )(解解:讲授新课讲授新课练习练习.CDBCAB )(化化简简ABCDCDBCAB )(解解:讲授新课讲授新课练习练习.CDBCAB )(化化简简ABC
5、DCDBCAB )(解解:AC讲授新课讲授新课练习练习.CD CDBCAB )(化化简简ABCDCDBCAB )(解解:AC讲授新课讲授新课练习练习.CDBCAB )(化化简简ABCDCDBCAB )(解解:AC讲授新课讲授新课练习练习.CD CDBCAB )(化化简简ABCDCDBCAB )(解解:ACAD讲授新课讲授新课练习练习.CD ABC 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?讲授新课讲授新课ABC 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,
6、和向量又如何?讲授新课讲授新课ABC 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?讲授新课讲授新课DABC 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?讲授新课讲授新课DABCE 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?讲授新课讲授新课DABCE 如果三个向量相加,四个向量相加,如果三个向量相加,四个向量相加,n 个向量相加,和向量又如何?个向量相加,和向量又如何?
展开阅读全文