卡尔曼滤波算法(含详细推导)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《卡尔曼滤波算法(含详细推导)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卡尔 滤波 算法 详细 推导 课件
- 资源描述:
-
1、卡尔曼滤波算法及推导1、kalman滤波问题考虑一离散时间的动态系统,它由描述状态向量的过程方程和描述观测向量的观测方程共同表示。(1)、过程方程 式中,M 1向量x(n)表示系统在离散时间n的状态向量,它是不可观测的;M M矩阵F(n+1,n)成为状态转移矩阵,描述动态系统在时间n的状态到n+1的状态之间的转移,应为已知。而M 1向量 为过程噪声向量,它描述状态转移中间的加性噪声或误差。)1.(),1(11)()()(nvnxnnFnx)(nv11、kalman滤波问题(1)、观测方程 式中,N 1向量y(n)表示动态系统在时间n的观测向量;N M矩阵C(n)称为观测矩阵(描述状态经过其作用
2、,变成可预测的),要求也是已知的;v2(n)表示观测噪声向量,其维数与观测向量的相同。过程方程也称为状态方程,为了分析的方便,通常假定过程噪声v1(n)和观测噪声v2(n)均为零均值的白噪声过程,它们的相关矩阵分别为:)2.()(2)()()(nvnxnCny1、kalman滤波问题)3.()()(),(,0111knnQknHkvnvE)4.()()(),(,0222knnQknHkvnvE1、kalman滤波问题还假设状态的初始值x(0)与v1(n)、v2(n),n 0均不相关,并且噪声向量v1(n)与v2(n)也不相关,既有:)5.(,0)()(21knkvnvEH2、新息过程考虑一步预
3、测问题,给定观测值y(1),.,y(n-1),求观测向量y(n)的最小二乘估计,记作(1)、新息过程的性质 y(n)的新息过程定义为:式中,N 1向量 表示观测数据y(n)的新的信息,简称新息。)1(),.,1()(1nyynynydef)6.().()()(1nynyn)(n2、新息过程新息 具有以下性质:性质1 n时刻的新息 与所有过去的观测数据y(1),.,y(n-1)正交,即:性质2 新息过程由彼此正交的随机向量序列 组成,即有)(n)(n)7.(11,0)()(nkkynEH)8(.11,0)()(nkknEH)(n2、新息过程性质3 表示观测数据的随机向量序列y(1),y(n)与表
4、示新息过程的随机向量序列a(1),a(n)一一对应,即以上性质表明:n时刻的新息a(n)是一个与n上课之前的观测数据y(1),.,y(n-1)不相关,并具有白噪声性质的随机过程,但它却能够提供有关y(n)的新息,这就上信息的内在物理含义。)9.().(),.1()(),.1(nnyy2、新息过程(2)、新息过程的计算 下面分析新息过程的相关矩阵 在kalman滤波中,并不直接估计观测数据向量的进一步预测 ,而是先计算状态向量的一步预测然后再用到下式得到 :)11().1(),.1()(1nyynxndefx)10.().()()(nnEnRH)(1ny)12.().()()(11nxnCny2
5、、新息过程将上式代入新息过程的定义式(6),可得到:这就是新息过程的实际计算公式,条件是:一步预测的状态向量估计 业已求出。定义向量的一步预测误差:)14.().()(),1(1nxnxnnedef)13.().()()()()()()()(211nvnxnxnCnxnCnyn)(1nx2、新息过程将此式代入式(13),则有在新息过程的相关矩阵定义式(10)中代入式(14),并注意到观测矩阵C(n)是一已知的确定矩阵,故有式中Q2(n)是观测噪声v2(n)的相关矩阵,而表示(一步)预测状态误差的相关矩阵)15().()1,()()(2nvnnenCn)16.(.).()()1,()()()()
6、()1,()1,()()(222nQnCnnKnCnvnvEnCnnenneEnCnRHHHH)17.(.).1,()1,()1,(nnenneEnnKH3、kalman滤波算法由上一节的的新息过程的相关知识和信息后,即可转入kalman滤波算法的核心问题的讨论:如何利用新息过程估计状态向量的预测?最自然的方法是用新息过程序列a(1),a(n)的线性组合直接构造状态向量的一布预测:式中W1(k)表示与一步预测项对应的权矩阵,且k为离散时间。现在的问题是如何确定这个权矩阵?(1)、状态向量的一布预测 根据正交性原理,最优预测的估计误差nkdefkkWnyynnxx111)()()(),.,1(1
7、()()1()1(n)1,e(n1nxnx3、kalman滤波算法应该与已知值正交,故有将式(18)代入(19),并利用新息过程的正交性,得到由此可以求出权矩阵的表达式:)20.().()()1()(11KRknxEkWH)()()()()()()1(11kRkWkkEkWknxEHH)19.(,.,1,0)()1()1()(),1(1nkknxnxEknneEHH3、kalman滤波算法 将式(20)代入式(18),状态向量的一步预测的最小均方估计可表示为注意到 并利用状态方程(1),易知下式对k=0,1,n成立:)21.().()()()1()()()()1()()()()1()1(111
展开阅读全文