222椭圆的简单几何性质直线与椭圆的位置关系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《222椭圆的简单几何性质直线与椭圆的位置关系课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 222 椭圆 简单 几何 性质 直线 位置 关系 课件
- 资源描述:
-
1、2.2.2椭圆的简单几何性质(椭圆的简单几何性质(3)怎么判断它们之间的位置关系?怎么判断它们之间的位置关系?问题问题1:直线与圆的位置关系有哪几种?:直线与圆的位置关系有哪几种?drd00=0几何法:几何法:代数法:代数法:问题问题3:怎么判断它们之间的位置关系?能用几何法吗?:怎么判断它们之间的位置关系?能用几何法吗?问题问题2:椭圆与直线的位置关系?:椭圆与直线的位置关系?不能!不能!所以只能用代数法所以只能用代数法-求解直线与二次曲线有关问题的通法求解直线与二次曲线有关问题的通法因为他们不像圆一样有统一的半径。因为他们不像圆一样有统一的半径。一.直线与椭圆的位置关系的判定mx2+nx+
2、p=0(m 0)Ax+By+C=0由方程组:由方程组:0相交相交方程组有两解方程组有两解两个交点两个交点代数法代数法=n2-4mp22221xyab 这是求解直线与二这是求解直线与二次曲线有关问题的次曲线有关问题的通法通法。例例1.已知直线已知直线y=x-与椭圆与椭圆x2+4y2=2,判断它们,判断它们的位置关系。的位置关系。2112yxx2+4y2=2解:联立方程组解:联立方程组消去消去y01452 xx=360,因为因为所以方程()有两个根,所以方程()有两个根,变式变式1:交点坐标是什么?:交点坐标是什么?弦长公式:弦长公式:则原方程组有两组解则原方程组有两组解.-(1)22121214
3、)kxxxx (2121|ABk xx 所以该直线与椭圆相交所以该直线与椭圆相交.变式变式2:相交所得的弦的弦长是多少?:相交所得的弦的弦长是多少?117(1,),(,)2510AB 由韦达定理由韦达定理12124515xxxx k表示弦的斜率,表示弦的斜率,x1、x2表示弦的端点坐标表示弦的端点坐标题型一:公共点问题题型一:公共点问题256AB例例2:判断直线:判断直线kx-y+3=0与椭圆与椭圆 的的 位置关系位置关系141622yx题型一:公共点问题题型一:公共点问题时,相离,即时,相切或,即时,相交或即由解4545-0)3(45450)2(4545,0)1(51616020241414
4、163:22222kkkkkkkxxxyxkxy例例3:直线:直线y=kx+1(kR)与椭圆与椭圆 恒有公共点恒有公共点,求求m的取值范围。的取值范围。1522 myx题型一:公共点问题题型一:公共点问题221:15ykxxym解22(5)10550mkxkxm 22104(5)550kmkm()()22(51)0mkm51501515122mmmmmkmkm且所以且又恒成立得由即lmm题型一:公共点问题题型一:公共点问题 oxy45250mxy直线 为:22402515414145mld直线 与椭圆的交点到直线 的距离最近。且思考:最大的距离是多少?2214-5400.259 xylxyl例
5、3:已知椭圆,直线:椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少?max22402565414145d题型一:公共点问题题型一:公共点问题 设直线与椭圆交于设直线与椭圆交于A(x1,y1),B(x2,y2)两点,两点,直线直线AB的斜率为的斜率为k弦长公式:弦长公式:知识点知识点2:弦长公式:弦长公式适用于任意二次曲线)()(21221221221241141yyyykxxxxkAB例例1:已知斜率为:已知斜率为1的直线的直线l过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A,B两点,求弦两点,求弦AB之长之长题型二:弦长问题题型二:弦长问题222:4,1,3.abc解 由椭圆
6、方程知(3,0).F右焦点:3.lyx直线 方程为22314yxxy258 380yxx消 得:1122(,),(,)A x yB xy设12128 38,55xxxx22212121211()4ABkxxkxxxx85题型二:弦长问题题型二:弦长问题例例 2 2:已知点已知点12FF、分别是椭圆分别是椭圆22121xy的左、右的左、右 解解法法一一韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点坐标公式来构造题型三:中点弦问题题型三:中点弦问题例例1、已知椭圆、已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此
7、弦所在直线的方程平分,求此弦所在直线的方程.141622yx点差法:利用端点在曲线上,坐标满足方程,作差构造点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率出中点坐标和斜率点点作差作差题型三:中点弦问题题型三:中点弦问题例例1、已知椭圆、已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.141622yx例例2、如图,已知椭圆、如图,已知椭圆 与直线与直线x+y-1=0交交于于A、B两点,两点,AB的中点的中点M与椭圆中心连线的与椭圆中心连线的斜率是斜率是 ,试求,试求a、b的值。的值。221axby2
8、 2,AB 22oxyABM22110axbyxy 解:2)210yab xbxb 消 得:(2)(1)0bab b=4-4(abab1122(,),(,)A x yB x y设121221,bbxxx xabab(,)baABMab ab中点22121 21()4ABkxxx x又MOakb222ba 2212 22()4bbabab12,33ab ,求此椭圆方程。的横坐标为所得椭圆的弦的中点截直线的椭圆和、焦点分别为例212325,025,03xy明理由。的方程;若不存在,说出直线?若存在,求的距离等于与有公共点,且直线与椭圆,使得直线的直线)是否存在平行于(的方程;)求椭圆(为其右焦点,
展开阅读全文