书签 分享 收藏 举报 版权申诉 / 34
上传文档赚钱

类型1722勾股定理的逆定理1-大赛获奖精美课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4715532
  • 上传时间:2023-01-04
  • 格式:PPT
  • 页数:34
  • 大小:1.36MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《1722勾股定理的逆定理1-大赛获奖精美课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    1722 勾股定理 逆定理 大赛 获奖 精美 课件
    资源描述:

    1、八年级八年级 下册下册17.2勾股定理的逆定理(勾股定理的逆定理(1)本课在学习勾股定理的基础上,研究当三角形中两本课在学习勾股定理的基础上,研究当三角形中两 边的平方和等于第三边的平方时,这个三角形是否边的平方和等于第三边的平方时,这个三角形是否 为直角三角形在研究过程中,介绍了逆命题、逆为直角三角形在研究过程中,介绍了逆命题、逆 定理的概念定理的概念课件说课件说明明 学习目标:学习目标:1理解勾股定理的逆定理,经历理解勾股定理的逆定理,经历“观察测量观察测量 猜想论证猜想论证”的定理探究的过程,体会的定理探究的过程,体会“构造构造 法法”证明数学命题的基本思想;证明数学命题的基本思想;2了

    2、解逆命题的概念,知道原命题为真命题,它了解逆命题的概念,知道原命题为真命题,它 的逆命题不一定为真命题的逆命题不一定为真命题 学习重点:学习重点:探索并证明勾股定理的逆定理探索并证明勾股定理的逆定理.课件说课件说明明勾股定理勾股定理如果直角三角形的两条直角边长分别为如果直角三角形的两条直角边长分别为a,b,斜边长为,斜边长为c,那么,那么a2+b2=c2题设(题设(条件条件):):直角三角形直角三角形的的两直角边长为两直角边长为a,b,斜边长为,斜边长为c 结论:结论:a2+b2=c2 问题问题1 1回忆勾股定理的内容回忆勾股定理的内容 形形数数回忆旧知再次梳理回忆旧知再次梳理 逆向思考提出问

    3、题逆向思考提出问题 思考思考 如果三角形的三边长如果三角形的三边长a,b,c 满足满足a2+b2=c2,那么这个三角形是否是直角三角形?那么这个三角形是否是直角三角形?逆向思考提出问题逆向思考提出问题 据说据说,古埃及人曾用下面的方法画直角:把一根长古埃及人曾用下面的方法画直角:把一根长绳打上等距离的绳打上等距离的13 个结,然后以个结,然后以3 个结间距,个结间距,4 个结间个结间距、距、5 个结间距的长度为边长,用木桩钉成一个三角形,个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角你认为结论正确吗?其中一个角便是直角你认为结论正确吗?(1)(2)(3)(4)(5)(6)(7)

    4、(8)(13)(12)(11)(10)(9)如果三角形的三边分别如果三角形的三边分别为为3,4,5,这些数满足,这些数满足关系:关系:32+42=52,围成的,围成的三角形是直角三角形三角形是直角三角形 实验操作:实验操作:(1)画一画:画一画:下列各组数中的两数平方和等于第三数的下列各组数中的两数平方和等于第三数的 平方,分别以这些数为边长画出三角形(单位:平方,分别以这些数为边长画出三角形(单位:cm),),它们是直角三角形吗?它们是直角三角形吗?2.5,6,6.5;6,8,10 (2)量一量:量一量:用量角器分别测量上述各三角形的最大角用量角器分别测量上述各三角形的最大角 的度数的度数(

    5、3)想一想:想一想:请判断这些三角形的形状,并提出猜想请判断这些三角形的形状,并提出猜想 精确验证提出猜想精确验证提出猜想A1B1C1 已知:如图,已知:如图,ABC的三边长的三边长a,b,c,满足,满足a2+b2=c2 求证:求证:ABC是直角三角形是直角三角形?三角形全三角形全等等 逻辑推理逻辑推理 证明结论证明结论 C是直是直角角ABC是直角三角是直角三角形形ABCa b c ba作用:作用:判定一个三角形三边满足什么条件时为直判定一个三角形三边满足什么条件时为直角三角角三角形形 演绎推理形成定理演绎推理形成定理 定理:定理:如果三角形的三边长如果三角形的三边长a,b,c 满足满足a2+

    6、b2=c2,那么这个三角形是直角三角形那么这个三角形是直角三角形41例例1判断由线段判断由线段a,b,c 组成的三角形是不是直组成的三角形是不是直 角三角形:角三角形:(1)a=15,b=17,c=8;(2)a=13,b=15,c=14;(3)a=,b=4,c=5直接运用巩固知识直接运用巩固知识分析:分析:根据勾股定理及其逆定理判断一个三角形是根据勾股定理及其逆定理判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方于最大边长的平方 解:解:(1)152+82=225+64=289,172=289,152+82=172

    7、.以以15,8,17为边长的三角形是直角三角为边长的三角形是直角三角形形 41例例1判断由线段判断由线段a,b,c 组成的三角形是不是直组成的三角形是不是直角三角形:角三角形:(1)a=15,b=17,c=8;(2)a=13,b=15,c=14;(3)a=,b=4,c=5直接运用巩固知识直接运用巩固知识像像15,17,8 这样,能够成为直角三角形三这样,能够成为直角三角形三条边长的三个正整数,称为条边长的三个正整数,称为勾股数勾股数勾股定理的勾股定理的逆定理逆定理:定理:如果三角形的三边长定理:如果三角形的三边长a,b,c 满足满足a2+b2=c2,那么这个三角形是直角三角形那么这个三角形是直

    8、角三角形 两个命题的题设与结论正好相反,像这样的两个命两个命题的题设与结论正好相反,像这样的两个命题叫做互逆命题如果把其中一个命题叫做题叫做互逆命题如果把其中一个命题叫做原命题原命题,那,那么另一个命题叫做它的么另一个命题叫做它的逆命题逆命题阶段小结适时梳理阶段小结适时梳理勾股定理的逆命勾股定理的逆命题:题:勾股定理:勾股定理:如果直角三角形两直角边分别为如果直角三角形两直角边分别为a,b,斜边为斜边为c,那么,那么a2+b2=c2直接运用巩固知识直接运用巩固知识说出下列命题的逆命题这些命题的逆命题是真命说出下列命题的逆命题这些命题的逆命题是真命题吗?题吗?(1)两条直线平行,内错角相等;)两

    9、条直线平行,内错角相等;逆命题:逆命题:内错角相等,两直线平行真命题内错角相等,两直线平行真命题(2)对顶角相等;)对顶角相等;逆命题:逆命题:相等的角是对顶角假命题相等的角是对顶角假命题(3)线段垂直平分线上的点到线段两端点的距离相等)线段垂直平分线上的点到线段两端点的距离相等 逆命题:逆命题:到线段两端点的距离相等的点在线段的到线段两端点的距离相等的点在线段的垂直平分线上真命题垂直平分线上真命题任何一个命题都有逆任何一个命题都有逆命题;原命题是真命题,其命题;原命题是真命题,其逆命题不一定是真命题逆命题不一定是真命题(1)勾股定理的逆定理的内容是什么?它有什么作)勾股定理的逆定理的内容是什

    10、么?它有什么作 用?用?(2)本节课我们学习了原命题,逆命题等知识,你)本节课我们学习了原命题,逆命题等知识,你 能说出它们之间的关系吗?能说出它们之间的关系吗?(3)在探究勾股定理的逆定理的过程中,我们经历)在探究勾股定理的逆定理的过程中,我们经历 了哪些过程?了哪些过程?课堂小结课堂小结 作业:教科书第作业:教科书第33页练习第页练习第1,2题题课后作业课后作业 如果两个量的比等于一个不为零的常数,那么就说这两个量xy=0.5m2abv=-2=成正比例成正比例.m216.3正比例函数正比例函数abxvy=0.5=-2=yxk=m216.3正比例函数abxvy=0.5=-2=函数函数y=kx

    11、(k是不等于零的常数)叫做正比例函数,是不等于零的常数)叫做正比例函数,k叫做比例系数叫做比例系数.练习1 判断下列各题中所指的两个量是否成正比例。(是在括号内打“”,不是在括号内打“”)(1)圆周长C与半径r()(2)圆面积S与半径r()(3)在匀速运动中的路 程S与时间t()(4)底面半径r为定长的圆锥的侧 面积S与母线长l()(5)已知y=3x-2,y与x ()rc 22rSS=v trls函数函数y=kx(k是不等于零的常数)叫做正比例函数,是不等于零的常数)叫做正比例函数,k叫做比例系数叫做比例系数.练习练习2练习练习3 若一个正比例函数的比例系数是4,则它的解析式是_.正比例函数y

    12、=kx中,当x=2时,y=10,则它的解析式是_.y=4xy=5x练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。xy-4-2 0-2-6-10840135练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。y-2-6-10840自自变变量量的的值值练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。x自自变变量量的的值值函函数数的的值值练习练习4 已知正比例函数y=-2x,写出下列集合中相对应的自变量x的值或函数y的值。自自变变量量的的值值函函数数的的值值代入解析式代入解析式练习练习5已

    13、知正比例函数y=2x中,(1)若0 y 10,则x的取值范围为_.(2)若-6 x 10,则y的取值范围为_.2x12y0 10-6 100 x5-12y20 江二中准备添置一批篮球,已知所购江二中准备添置一批篮球,已知所购 篮球的总价篮球的总价y y(元)与个数(元)与个数x x(个)成正比例,(个)成正比例,当当x=4x=4(个)时,(个)时,y=100y=100(元)。(元)。(1 1)求正比例函数关系式及自变量的取值范围;)求正比例函数关系式及自变量的取值范围;(2 2)求当)求当x=10 x=10(个)时,函数(个)时,函数y y的值;的值;(3 3)求当)求当y=500y=500(

    14、元)时,自变量(元)时,自变量x x的值。的值。例 1解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为y=kx,(2)当)当x=10(个)时,(个)时,y=25x=2510=250(元)。(元)。把把x=4,y=100代入,得代入,得 100=4k。解得解得 k=25。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是y=25x。自变量自变量x x的取值范围是所有自然数。的取值范围是所有自然数。(3)当)当y=500(元)时,(元)时,x=20(个)。(个)。y25500 25例例 2 2 下图表示江山到礼贤主要停靠站之间路程的下图表示江山到礼贤主要停靠站之间路

    15、程的千米数。一辆满载礼贤乘客的中巴车于上午千米数。一辆满载礼贤乘客的中巴车于上午8 8:0000整从江山开往礼贤,已知中巴车行驶的路程整从江山开往礼贤,已知中巴车行驶的路程S S(千米)(千米)与时间与时间t t(分)成正比例(途中不停车),当(分)成正比例(途中不停车),当t=4t=4(分)(分)时,时,S=2S=2千米。问:千米。问:(1)正比例函数的解析式;)正比例函数的解析式;(2)从)从8:30到到8:40,该中巴车行驶在哪一段公路上;,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。)从何时到何时,该车行使在淤头至礼贤这段公路上。江山江山贺村贺村淤头

    16、淤头礼贤礼贤14千米千米6千米千米2千米千米 下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午的中巴车于上午8 8:0000整从江山开往礼贤,已知中巴车行驶的路程整从江山开往礼贤,已知中巴车行驶的路程S S(千米)(千米)与时间与时间t t(分)成正比例(途中不停车),当(分)成正比例(途中不停车),当t=4t=4(分)时,(分)时,S=2S=2千米。问:千米。问:(1)正比例函数的解析式;)正比例函数的解析式;(2)从)从8:30到到8:40,该中巴车行驶在哪一段公路上;,该中巴车行驶在哪一段公路上;(

    17、3)从何时到何时,该车行使在淤头至礼贤这段公路上。)从何时到何时,该车行使在淤头至礼贤这段公路上。江山江山贺村贺村淤头淤头礼贤礼贤14千米千米6千米千米2千米千米解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为S=k t,(2)由已知,得)由已知,得30t40,把把t=4,S=2代入,得代入,得 2=4t。解得解得 k=0.5。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是S=0.5t。302S40即即15 S20。由图可知中巴车行使在贺村至淤头公路上。由图可知中巴车行使在贺村至淤头公路上。(3)由已知,得)由已知,得20S22,200.5t22即即40t4

    18、4。所以从所以从8:40至至8:44,该车行使在淤头至礼贤公路上。,该车行使在淤头至礼贤公路上。待定系数法求正比例函数解析式的一般步骤待定系数法求正比例函数解析式的一般步骤二、二、把已知的自变量的值和对应的函数值代入把已知的自变量的值和对应的函数值代入所设的解析式,得到以比例系数所设的解析式,得到以比例系数k为未知数的为未知数的方程,解这个方程求出比例系数方程,解这个方程求出比例系数k。三、三、把把k的值代入所设的解析式。的值代入所设的解析式。一、一、设所求的正比例函数解析式。设所求的正比例函数解析式。待定系数法例例 1 1解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为y=

    19、kx,例 2 解解(1)设所求的正比例函数的解析式为设所求的正比例函数的解析式为S=k t,把把x=4,y=100代入,得代入,得 100=4k。解得解得 k=25。把把t=4,S=2代入,得代入,得 2=4t。解得解得 k=0.5。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是y=25x。所以,所求的正比例函数的解析式是所以,所求的正比例函数的解析式是S=0.5t。练习练习6 一个容积为一个容积为50公升的空油箱到加油站公升的空油箱到加油站加油,已知注入油量加油,已知注入油量y(公升)和注油的时间(公升)和注油的时间x(分分)成正比例,当成正比例,当x=3(分)时,(分)时

    20、,y=15(公升)。(公升)。(1)求正比例函数的解析式;)求正比例函数的解析式;(2)若注了)若注了8分钟的油,问油箱里的油会满出来吗?分钟的油,问油箱里的油会满出来吗?(3)若要把这个油箱注满,问需要多长时间?)若要把这个油箱注满,问需要多长时间?(4)求自变量的取值范围。)求自变量的取值范围。练习练习7 已知已知y与与x+2 成正比例,当成正比例,当x=4时,时,y=12,那么当那么当x=5时,时,y=_.有人说如果有人说如果y与与x成正比例,当成正比例,当x扩扩大若干倍,大若干倍,y也扩大同样倍。也扩大同样倍。你认为他讲的对吗?你认为他讲的对吗?思考题思考题?本课小结函数函数y=kx(k是不等于零的常数)叫做正比例函数。是不等于零的常数)叫做正比例函数。比例系数比例系数 (1)直接根据已知的比例系数求出解析式)直接根据已知的比例系数求出解析式 (2)待定系数法)待定系数法1、正比例函数的定义、正比例函数的定义2、求正比例函数解析式的两种方法:、求正比例函数解析式的两种方法:3、在知道正比例函数解析式的前提下、在知道正比例函数解析式的前提下函数的值与取值范围函数的值与取值范围自变量的值与取值范围自变量的值与取值范围

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1722勾股定理的逆定理1-大赛获奖精美课件.ppt
    链接地址:https://www.163wenku.com/p-4715532.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库