书签 分享 收藏 举报 版权申诉 / 81
上传文档赚钱

类型14集合的基本运算课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4715522
  • 上传时间:2023-01-04
  • 格式:PPT
  • 页数:81
  • 大小:1.81MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《14集合的基本运算课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    14 集合 基本 运算 课件
    资源描述:

    1、1ppt课件 两个实数两个实数除了可以比较大小外,还可以进除了可以比较大小外,还可以进行行加法加法运算,类比实数的加法运算,两个集合运算,类比实数的加法运算,两个集合是否也可以是否也可以“相加相加”呢?呢?2ppt课件 考察下列各个集合,你能说出集合考察下列各个集合,你能说出集合C与集与集合合A、B之间之间的关系吗的关系吗?(1)A=1,3,5,B=2,4,6,C=1,2,3,4,5,6(2)A=x|x是有理数,是有理数,B=x|x是无理数,是无理数,C=x|x是实数是实数 集合集合C是由所有属于集合是由所有属于集合A或属于或属于B的元素的元素组成的组成的3ppt课件 一般地,由所有属于集合一

    2、般地,由所有属于集合A或属于集合或属于集合B的元素所的元素所组成的集合,称为集合组成的集合,称为集合A与与B的的并集并集(Union set)记作:记作:AB(读作:(读作:“A并并B”)即:即:AB=x|x A,()x BVenn图表示:图表示:ABAB 说明说明:两个集合求并集,结果还是一个集合,是由集合:两个集合求并集,结果还是一个集合,是由集合A与与B 的所有元素组成的集合(的所有元素组成的集合(重复元素只看成一个元素重复元素只看成一个元素)ABABABAB或或4ppt课件例例1 1设设A=4=4,5 5,6 6,88,B=3=3,5 5,7 7,88,求求AU UB解:解:8,7,5

    3、,38,6,5,4 BA8,7,6,5,4,3 例例2 2设集合设集合A=x|-1|-1x22,B=x|1|1x33,求求AU UB解:解:31|21|xxxxBA31|xx可以在数轴上表示例可以在数轴上表示例2 2中的并集,如下图:中的并集,如下图:集合运算常用数轴画集合运算常用数轴画图观察图观察5ppt课件AA ;A ;ABA B_A6ppt课件ABBA:1AAA:2AA:3ABABA:4ABAAB:5BABBAA,:6)()(:7CBACBA并集的交换律并集的结合律ABABAABA:87ppt课件 考察下面的问题,集合考察下面的问题,集合C与集合与集合A、B之之间间有什么关系吗有什么关系

    4、吗?(1)A=2,4,6,8,10,B=3,5,8,12,C=8(2)A=x|x是是新华中学新华中学2004年年9月入学的女同学月入学的女同学,B=x|x是新华中学是新华中学2004年年9月入学的高一年级同学月入学的高一年级同学,C=x|x是新华中学是新华中学2004年年9月入学的高一年级女同月入学的高一年级女同学学 集合集合C是由那些既属于集合是由那些既属于集合A且又属于集合且又属于集合B的所有元素组成的的所有元素组成的8ppt课件 一般地,由属于集合一般地,由属于集合A且属于集合且属于集合B的所有元素组的所有元素组成的集合,称为成的集合,称为A与与B的的交集交集(intersection

    5、set)记作:记作:AB(读作:(读作:“A交交B”)即:即:A B=x|x A()x BVenn图表示:图表示:说明说明:两个集合求交集,结果还是一个集合,是由集合:两个集合求交集,结果还是一个集合,是由集合A与与B 的公共元素组成的集合的公共元素组成的集合ABAB=ABABABB且且9ppt课件A A ;A ;A BA A_B10ppt课件(1)设A1,2,B2,3,4,则AB (2)设Ax|x2,则AB .211ppt课件D 12ppt课件(4)设A1,2,Ba,3,若AB1,则a ;若AB,则a .(5)设Ax|x1,Bx|x2,则AB .11或213ppt课件ABBA:1AAA:2A

    6、A:3ABABA:4ABAAB:5BABBAA,:6)()(:7CBACBAABBA:1AAA:2A:3ABABA:4ABAAB:5BABBAA,:6)()(:7CBACBA14ppt课件3,5,6,8=4,5,7,8,ABAB AB设,求3,4,5,6,7,8AB 5,8AB 15ppt课件5,0,10,AxxBxxCxxA B B C A B C 则分 别 是 什 么?解:解:A B5A0B0 0BCx x17ppt课件5,0,10,AxxBxxCxxA B B C A B C 则分 别 是 什 么?解:解:ABC5A0BABC 10C18ppt课件 用适当的符号(、)填空AB A,B A

    7、B,AB AAB B,AB AB 19ppt课件一些性质(补充):一些性质(补充):(AB)CA(BC);(AB)CA(BC);A(BC)(AB)(AC);A(BC)(AB)(AC)20ppt课件(2010湖南文,9)已知集合A1,2,3,B2,m,4,AB2,3,则m_.解析由题意知m3.答案321ppt课件6(09上海)已知集合Ax|x1,Bx|xa,且ABR,则实数a的取值范围是_ 答案a1 解析将集合A、B分别表示在数轴上,如图所示 要使ABR,则a1.22ppt课件7你会求解下列问题吗?集合Ax|2xm,AB,则m的取值范围 是 .(2)若Bx|xm,AB,则m的取值范围 是 .(3

    8、)若Bx|xm5且x2m1,AB ,则m的取值范围是.m2m11m323ppt课件2利用数形结合的思想,将满足条件的集合用韦恩图或数轴一一表示出来,从而求集合的交集、并集,这是既简单又直观且是最基本、最常见的方法,要注意灵活运用3集合元素的互异性在解决集合的相等关系、子集关系、交集等时常遇到,忽视它很多时候会造成结果失误,解题时要多留意解决集合问题时,常常要分类讨论,要注意划分标准的掌握,做到不重、不漏,注意检验24ppt课件若已知xAB,那么它包含三种情形:xA且x B;xB且x A;xA且xB,这在解决与并集有关问题时应引起注意25ppt课件 在求AB时,只要搞清两集合的公共元素是什么或公

    9、共元素具有怎样的性质即可反之,若已知aAB,那么就可以断定aA且aB;若AB,说明集合A与B没有公共元素26ppt课件例(09全国)设集合MmZ|3m2,NnZ|1n3,则MN()A0,1B1,0,1C0,1,2 D1,0,1,2 解析M2,1,0,1,N1,0,1,2,3,MN1,0,1,故选B.B27ppt课件若集合Ax|2x3,Bx|x4,则集合AB等于()Ax|x3或x4 Bx|1x3 Cx|3x4 Dx|2x1答案D解析将集合A、B表示在数轴上,由数轴可得ABx|2x15,则UA x|x1559ppt课件5已知全集U1,2,3,4,5,A1,2,3,B2,3,4,则U(AB)()A2

    10、,3B1,4,5 C4,5 D1,5答案B解析AB2,3,U(AB)1,4,560ppt课件6(09浙江理)设UR,Ax|x0,Bx|x1,则AUB()Ax|0 x1 Bx|0 x1 Cx|x1答案B解析Bx|x1,UBx|x1,AUBx|x0 x|x1x|0 x1故选B.61ppt课件2.设集合A=|2a1|,2,B=2,3,a2+2a3 且CBA=5,求实数a的值。解:易得集合易得集合A中没有中没有5,集合,集合B中一定有中一定有5.a2+2a35.a2 or 4.接下来验证是否满足题意要求。接下来验证是否满足题意要求。此步骤一般不可少!此步骤一般不可少!当当a2时,时,|2a1|3.此时

    11、,满足此时,满足CBA5.当当a4时,时,|2a1|9.此时,显然不满足此时,显然不满足.综上所述,综上所述,a2.62ppt课件几点说明几点说明(1)补集是相对全集而言,离开全集谈补集补集是相对全集而言,离开全集谈补集 没有意义;没有意义;(2)若若B UA,则,则A UB,即即 U(UA)A;(3)UU,UU (4)U(AB)=(UA)(UB)U(AB)=(UA)(UB)63ppt课件例2设全集U,已知集合M、P、S之间满足关系:MUP,PUS,则集合M与S之间的正确关系是()AMUSBMS CS M DM S64ppt课件 分析研究抽象集合的关系问题,可以利用集合的Venn图去分析,在作

    12、图的时候要设法将所有可能的情况都考虑进去,以防因思虑不全面和由局部图形的先入为主而导致解题的失误 解析由图形可得正确选项为B.65ppt课件例3已知Ax|x3,Bx|xa(1)若AB,问RBRA是否成立?(2)若RARB,求a的取值范围解析(1)AB,如图(1)a3,而RBx|xa,RAx|x3RBRA.即RBRA成立66ppt课件(2)如图(2),RAx|x3,RBx|xaRARB,a3.故所求a的取值范围为 a|a3总结评述:解决这类问题一要注意数形结合,以形定数,才能相得益彰,二要注意验证端点值,做到准确无误,不然功亏一篑67ppt课件已知全集U2,0,3a2,P2,a2a2,且UP1,

    13、则实数a_.答案2解析由PUPU知,68ppt课件3.已知全集U=1,2,3,4,5,非空集 A=xU|x25x+q=0,求CUA及q的值。解:解:集合集合A非空,则非空,则x25x+q=0一定有解一定有解.由根及韦达定理知:由根及韦达定理知:x1x25,254q0,q x1x2.x1,x2的组合可以是:的组合可以是:1和和4,2和和3.即即A1,4,2,3.CUA2,3,5,q4;or CUA1,4,5,q6.69ppt课件224.|20,|0 2,1,5,2,.Ax xpxBx xqxrABABp q r 已知且求的值 2 22.2201.1.2 12 5.ABAxpxpAAB 解:,集合

    14、 中必有元素即是方程的一个解,代入得:由此可解得 中的另一个元素为,22 50253.2 510 xqxrqqrr ,是方程的两个根.由韦达定理知:全部回代,验证是否正确。70ppt课件25.4,21,5,1,9,9,.AaaBaaABaAB 设已知求 的值 并求出29,99219,3539,5,4,2,2,9,.39,7,4,8,4,9,9 7,4,8,4,9.525,9,4,0,4,9,4,9,9ABAaaaaaABBaABABABaABABAB 解:所以或解得或当时,中元素违背了互异性,舍去当时,满足题意,故当时,此时与矛盾,故.3 7,4,8,4,9.aAB 舍去综上所述,且71ppt

    15、课件.,01|,023|.322的值求实数若已知aABAaaxxxBxxxA 1,2,.121,2.0.01 211002 42101212 31 2123.AABABABBBBBaBaaaBaaaaBaaaa 解:或或或当时,不存在当时,;当时,不存在;当,时,;综上所述,或72ppt课件4.|21|1,|2,|13,.Axxx xBx axbABx xABxxa b 设集合若求的值解:不等关系一般都会借助于数轴。解:不等关系一般都会借助于数轴。前面几个例题都是等式关系,接下来我们来思考不等关系。前面几个例题都是等式关系,接下来我们来思考不等关系。在数轴上画出集合在数轴上画出集合A的区域如下

    16、所示:的区域如下所示:|2211.|1313.ABx xabABxxab ,又,73ppt课件 例已知集合Ax|x24mx2m60,Bx|x0,若AB,求实数m的取值范围分析分析集合集合A是由方程是由方程x24mx2m60的实根组成的实根组成的集合,的集合,AB 说明方程的根可能为:说明方程的根可能为:(1)两负根;两负根;(2)一负根一零根;一负根一零根;(3)一负根一正根三种情况,分别求解十一负根一正根三种情况,分别求解十分麻烦,这时我们从求解问题的反面考虑,采用分麻烦,这时我们从求解问题的反面考虑,采用“正难正难则反则反”的解题策略,先由的解题策略,先由0求出全集求出全集U,然后求方程,

    17、然后求方程两根均为非负时两根均为非负时m的取值范围,最后再利用的取值范围,最后再利用“补集补集”求求解解74ppt课件4.|21|1,|2,|13,.Axxx xBx axbABx xABxxa b 设集合若求的值解:不等关系一般都会借助于数轴。解:不等关系一般都会借助于数轴。前面几个例题都是等式关系,接下来我们来思考不等关系。前面几个例题都是等式关系,接下来我们来思考不等关系。在数轴上画出集合在数轴上画出集合A的区域如下所示:的区域如下所示:|2211.|1313.ABx xabABxxab ,又,75ppt课件76ppt课件例已知集合UxR|1x7,AxR|2x5,BxR|3x7,求 (1

    18、)(UA)(UB);(2)U(AB);(3)(UA)(UB);(4)U(AB)(5)观察上述结果你能得出什么结论77ppt课件 解析利用数轴工具,画出集合U、A、B的示意图,如下图所示 可以得到,ABxR|3x5 ABxR|2x7,UAxR|1x2或5x7,UBxR|1x3或x778ppt课件从而可求得(1)(UA)(UB)xR|1x27(2)U(AB)xR|1x27(3)(UA)(UB)xR|1x3或5x7(4)U(AB)xR|1x3或5x7(5)认真观察不难发现:U(AB)(UA)(UB);U(AB)(UA)(UB)79ppt课件 设U1,2,3,4,5,6,7,8,A3,4,5,B4,7

    19、,8,求UA,UB,(UA)(UB),(UA)(UB)答案UA1,2,6,7,8,UB1,2,3,5,6,(UA)(UB)1,2,6,(UA)(UB)1,2,3,5,6,7,880ppt课件 1 1求集合的求集合的并、交、补并、交、补是集合间的基本运算,是集合间的基本运算,运算结果仍然还是集合运算结果仍然还是集合 3 3注意结合注意结合VennVenn图或数轴图或数轴进而用集合语言表进而用集合语言表达,增强数形结合的思想方法达,增强数形结合的思想方法 2 2区分交集与并集的关键是区分交集与并集的关键是“且且”与与“或或”,在处理有关交集与并集的问题时,常常从这两个字在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件眼出发去揭示、挖掘题设条件81ppt课件

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:14集合的基本运算课件.ppt
    链接地址:https://www.163wenku.com/p-4715522.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库