1411-直角三角形三边的关系-大赛获奖教学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《1411-直角三角形三边的关系-大赛获奖教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1411 直角三角形 三边 关系 大赛 获奖 教学 课件
- 资源描述:
-
1、情境引入1.掌握勾股定理及其简单应用,理解定理的一般探究方法(重点)2.通过利用方格纸计算面积的方法探索勾股定理,经历观察、归纳、猜想和验证的数学发现过程,发展数形结合的数学思想(难点)学习目标 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?导入新课导入新课问题情境问题情境(图中每一格代表一平方厘米)(1)正方形P的面积是 平方厘米;(2)正方形Q的面积是 平方厘米;(3)正方形R的面积是 平方厘米.121SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存
2、在什么关系吗?Sp=AC2 SQ=BC2 SR=AB2直角三角形三边的关系讲授新课讲授新课上面三个正方形的面积之间有什么关系?观察正方形瓷砖铺成的地面.这说明在等腰直角三角形ABC中,两直角边的平方和等于斜边的平方 那么,在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?想一想想一想P的面积(单位长度)Q的面积(单位长度)R的面积(单位长度)图2图3P、Q、R面积关系直角三角形三边关系QPRQPRABCABC916259413SP+SQ=SRBC2+AC2=AB2(每一小方格表示1平方厘米)试一试试一试BC2+AC2=AB2QPRQPR把R看作是四个直角三角形的面积+小正方形面积.Q
3、PRQPR把R看作是大正方形面积减去四个直角三角形的面积.432147225S正方形R 分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立.做一做做一做 由前面的探索可以发现:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有 a2+b2=c2勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方.几何语言:在RtABC中,C=90,a2+b2=c2(勾股定理).aABCbc归归 纳纳勾股定理揭示了直角三角形三边之间的关系.温馨提示:温馨提示:上述这种验证勾股定理的方法是用上述这种验证勾股定理
4、的方法是用面积法面积法 “赵爽弦图赵爽弦图”表现了我国古人对数学的钻研精神和聪明表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲才智,它是我国古代数学的骄傲.因为,这个图案被选为因为,这个图案被选为2002年在北京召开的国际数学大会的会徽年在北京召开的国际数学大会的会徽.abcS大正方形c2S小正方形(b-a)S大正方形4S三角形S小正方形赵爽弦图赵爽弦图证明:证明:b-aaaaabbbbcccc方法小结:我们利用拼图的方法,将形的问题与数的问题结合起来,再进行整式运算,从理论上验证了勾股定理大正方形的面积可以表示为 ;也可以表示为 .(a+b)2c2+4ab/2(a+b)2=
5、c2+4ab/2a2+2ab+b2=c2+2ab a2+b2=c2 用四个全等的直角三角形,还可以拼成如图所示的图形,你能否根据这一图形,证明勾股定理.做一做做一做求下列图形中未知正方形的面积或未知边的长度(口答):?225100 x1517已知直角三角形两边,求第三边.练一练当堂练习当堂练习1.图中阴影部分是一个正方形,则此正方形的面积 为 .15 cm17 cm64 cm2.判断题 ABC的两边AB=5,AC=12,则BC=13()ABC的a=6,b=8,则c=10()3.填空题 在ABC中,C=90,AC=6,CB=8,则ABC面积为_,斜边为上的高为_.244.8ABCD4.一高为2.
6、5米的木梯,架在高为2.4米的墙上(如图),这时梯脚与墙的距离是多少?ABC解:在RtABC中,根据勾股定理,得:BC2=AB2-AC2 =2.52-2.42 =0.49,所以BC=0.7.5.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶上方4 km处,过了15 s,飞机距离这个男孩头顶5 km.这一过程中飞机飞过的距离是多少千米?4554CBA解:在RtABC中,答:飞机飞过的距离是3km.222BC=5-4=9BC0BC=3(km),6.如图,一根旗杆在离地面9 m处折断,旗杆顶部落在离旗杆底部12 m处.旗杆原来有多高?12 m12 m9 m9 m解:设旗杆顶部到折断处的距离为x m
7、,根据勾股定理,得x=15,15+9=24(m).答:旗杆原来高24 m.222912x认识勾股定理如果直角三角形两直角边长分别为a,b,斜边长为 c,那么a2+b2=c2 课堂小结课堂小结利用勾股定理进行计算见学练优本课时练习课后作业课后作业1.理解和掌握用尺规作:经过一已知点作已知直线的垂线及已知线段的垂直平分线.(重点)2.已知底边及底边上的高,能够利用直尺和圆规作出等腰三角形.(重点)3.在利用尺规作图的过程中,培养学生动手操作能力与探 索精神学习目标导入新课导入新课1.回顾已经学过的基本作图有哪几种?复习引入2.点与直线的位置关系有几种情况?(1)点在直线上;(2)点在直线外.3.经
8、过一已知点作已知直线的垂线有可以分为几种情况?两种.基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线.讲授新课讲授新课经过一已知点作已知直线的垂线一基本作图4.经过一已知点作已知直线的垂线可分为两种情况来讨论:1.经过已知直线上一点作已知直线的垂线.2.经过已知直线外一点作已知直线的垂线.1.经过已知直线上一点作已知直线的垂线 已知直线AB和AB上一点C,试按下列步骤用直尺 和圆规准确地经过点C作出直线AB的垂线.如图,由于点C在直线AB上,因此所求作的垂线正好是平角ACB的平分线所在的直线.第一步:作平角ACB的平分线CD;第二步:反向延长射线CD.D
展开阅读全文