中考数学必会压轴题汇总x课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考数学必会压轴题汇总x课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 汇总 课件 下载 _中考其它_中考复习_数学_初中
- 资源描述:
-
1、学 海 无 涯 1如图,已知抛物线 y=ax2+bx+c(a0)经过 A(1,0),B(4,0),C(0,2)三点(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点 E 使以 A、B、E 为顶点的三角形与COB 相似?若存在,试求出 点E 的坐标;若不存在,请说明理由;(3)若将直线 BC 平移,使其经过点 A,且与抛物线相交于点 D,连接 BD,试求出BDA 的度数2如图,直线 y=2x+2 与 x 轴交于点 A,与 y 轴交于点 B,把AOB 沿 y 轴翻折,点 A 落到点 C,过点 B的抛物线 y=x2+bx+c 与直线 BC 交于点 D(3,4)1求直线 BD 和抛物线
2、的解析式;2在第一象限内的抛物线上,是否存在疑点 M,作 MN 垂直于 x 轴,垂足为点 N,使得以 M、O、N为顶点的三角形与BOC 相似?若存在,求出点 M 的坐标;若不存在,请说明理由;3在直线 BD 上方的抛物线上有一动点 P,过点 P 作 PH 垂直于 x 轴,交直线 BD 于点 H,当四边形 BOHP是平行四边形时,试求动点 P 的坐标3在平面直角坐标系 xOy 中,已知抛物线 y=x22mx+m291求证:无论 m 为何值,该抛物线与 x 轴总有两个交点;2该抛物线与 x 轴交于 A,B 两点,点 A 在点 B 的左侧,且 OAOB,与 y 轴的交点坐标为(0,5),求此抛物线的
3、解析式;3在(2)的条件下,抛物线的对称轴与 x 轴的交点为 N,若点 M 是线段 AN 上的任意一点,过点 M作直线 MCx 轴,交抛物线于点 C,记点 C 关于抛物线对称轴的对称点为 D,点 P 是线段 MC 上一点,且满足 MP=MC,连结 CD,PD,作 PEPD 交 x 轴于点 E,问是否存在这样的点 E,使得 PE=PD?若存在,求出点 E 的坐标;若不存在,请说明理由学 海 无 涯 4如图,过 A(1,0)、B(3,0)作 x 轴的垂线,分别交直线 y=4x 于 C、D 两点抛物线 y=ax2+bx+c经过 O、C、D 三点1求抛物线的表达式;2点 M 为直线 OD 上的一个动点
4、,过 M 作 x 轴的垂线交抛物线于点 N,问是否存在这样的点 M,使得 以 A、C、M、N 为顶点的四边形为平行四边形?若存在,求此时点 M 的横坐标;若不存在,请说明理由;3若AOC 沿 CD 方向平移(点 C 在线段 CD 上,且不与点 D 重合),在平移的过程中AOC 与 OBD重叠部分的面积记为 S,试求 S 的最大值5如图,在平面直角坐标系中,AOB 的三个顶点的坐标分别是 A(4,3),O(0,0),B(6,0)点M 是 OB 边上异于 O,B 的一动点,过点 M 作 MNAB,点 P 是 AB 边上的任意点,连接 AM,PM,PN,B(N 1 )设求点出M O A(所x,在 0
5、直),线 的 P M 解N 析的式面,积并为求出S 点 M 的坐标为(1,0)时,点 N 的坐标;2求出 S 关于 x 的函数关系式,写出 x 的取值范围,并求出 S 的最大值;3若 S:SANB=2:3 时,求出此时 N 点的坐标6已知:如图,菱形 ABCD 中,对角线 AC,BD 相交于点 O,且 AC=12cm,BD=16cm点 P 从点 B 出 发,沿 BA 方向匀速运动,速度为 1cm/s;同时,直线 EF 从点 D 出发,沿 DB 方向匀速运动,速度为 1cm/s,EFBD,且与 AD,BD,CD 分别交于点 E,Q,F;当直线 EF 停止运动时,点 P 也停止运动连接 PF,设(
6、运1)动 当 时 t间 为 为 何t 值(时 s),(四0 边 t 形8 A)P F 解D 答是下平列行问四题边:形?2设四边形 APFE 的面积为 y(cm2),求 y 与 t 之间的函数关系式;3是否存在某一时刻 t,使 S 四边形 APFE:S 菱形 ABCD=17:40?若存在,求出 t 的值,并求出此时 P,E 两 点间的距离;若不存在,请说明理由学 海 无 涯 7如图,抛物线 y=ax2+bO)与 y 轴交于点 C(O,4),与 x 轴交于点 A 和点 B,其中点 A 的坐标为(-2,0),抛物线的对称轴 x=1 与抛物线交于点 D,与直线 BC 交于点 E(1)求抛物线的解析式;
7、(2)若点 F 是直线 BC 上方的抛物线上的一个动点,是否存在点 F 使四边形ABFC 的面积为 17,若存在,求出点 F 的坐标;若不存在,请说明理由;(3)平行于 DE 的一条动直线 Z 与直线 BC 相交于点 P,与抛物线相交于点 Q,若以 D、E、P、Q 为顶点的四边形是平行四边形,求点 P 的坐标。8如图,在平面直角坐标系中,RtABC 的顶点 A,C 分别在 y 轴,x 轴上,ACB=90,OA=,抛物线 y=ax2axa 经过点 B(2,),与 y 轴交于点 D1求抛物线的表达式;2点 B 关于直线 AC 的对称点是否在抛物线上?请说明理由;3延长 BA 交抛物线于点 E,连接
8、 ED,试说明 EDAC 的理由9二次函数 y=ax2+bx+c 的图象经过点(1,4),且与直线 y=x+1 相交于 A、B 两点(如图),A 点在 y 轴上,过点 B 作 BCx 轴,垂足为点 C(3,0)(1)求二次函数的表达式;(2)点 N 是二次函数图象上一点(点 N 在 AB 上方),过 N 作 NPx 轴,垂足为点 P,交 AB 于点 M,求(3 M)N 在 的(最2)大 的 值 条;件下,点 N 在何位置时,BM 与 NC 相互垂直平分?并求出所有满足条件的 N 点的坐标学 海 无 涯 10如图,在平面直角坐标系中,已知点 A 的坐标是(4,0),并且 OA=OC=4OB,动点
9、 P 在过 A,B,C三点的抛物线上1求抛物线的解析式;2是否存在点 P,使得ACP 是以 AC 为直角边的直角三角形?若存在,求出所有符合条件的点 P 的 坐标;若不存在,说明理由;3过动点 P 作 PE 垂直于 y 轴于点 E,交直线 AC 于点 D,过点 D 作 y 轴的垂线垂足为 F,连接 EF,当线段 EF 的长度最短时,求出点 P 的坐标11如图,矩形 ABCD 中,AB=20,BC=10,点 P 为 AB 边上一动点,OP 交 AC于点 Q(1)求证:APQCDQ;(2)P 点从 A 点出发沿 AB 边以每秒 1 个单位长度的速度向 B 点移动,移动时间 为 t 秒当 t 为何值
10、时,DPAC?设 SAPQ+SDCQ=y,写出 y 与 t 之间的函数解析式,并探究 P 点运动 到第几秒到第几秒之间时,y 取得最小值12.如图 1,抛物线 y 3 x2 平移后过点 A(8,,0)和原点,顶点为 B,16对称轴与 x 轴相交于点 C,与原抛物线相交于点 D(1)求平移后抛物线的解析式并直接写出阴影部分的面积 S阴影;(2)如图 2,直线 AB 与 y 轴相交于点 P,点 M 为线段 OA 上一动点,PMN 为直角,边 MN 与 AP 相交于点 N,设OM t,试探求:t 为何值时MAN 为等腰三角形;t 为何值时线段 PN 的长度最小,最小长度是多少AyO第 28 题ABC
11、MNxyPO第 28 题学 海 无 涯 13如图,点 A 与点 B 的坐标分别是(1,0),(5,0),点 P 是该直角坐标系内的一个动点1使APB=30的点 P 有 无数 个;2若点 P 在 y 轴上,且APB=30,求满足条件的点 P 的坐标;3当点 P 在 y 轴上移动时,APB 是否有最大值?若有,求点 P 的坐标,并说明此时APB 最大的理由;若没有,也请说明理由14如图,在平面直角坐标系中,二次函数 y=x22x3 的图象与 x 轴交于 A、B 两点,与 y 轴交于点 C,连接 BC,点 D 为抛物线的顶点,点 P 是第四象限的抛物线上的一个动点(不与点 D 重合)1求OBC 的度
12、数;2连接 CD、BD、DP,延长 DP 交 x 轴正半轴于点 E,且 SOCE=S 四边形 OCDB,求此时 P 点的坐标;3过点 P 作 PFx 轴交 BC 于点 F,求线段 PF 长度的最大值 15.学 海 无 涯 16.如图,抛物线 y x2 4x 与 x 轴分别相交于点 B、O,它的顶点为 A,连接 AB,把 AB 所的直线沿 y 轴向上 平移,使它经过原点 O,得到直线 l,设 P 是直线 l 上一动点.(1)求点 A 的坐标;(2)以点 A、B、O、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点 A、B、O、P 为顶点
13、的四边形的面积为 S,点 P 的横坐标为 x,当4 6 2 S 6 8 2 时,求 x 的取值范围.18.如图,现有两块全等的直角三角形纸板,它们两直角边的长分别为 1 和 2将它们分别放置于平 面直角坐标系中的AOB,COD 处,直角边OB,OD 在 x 轴上一直尺从上方紧靠两纸板放置,让 纸板沿直尺边缘平行移动当纸板移动至PEF 处时,设 PE,PF与OC 分别交于点 M,N,与 x 轴分别交于点G,H 1求直线 AC 所对应的函数关系式;2当点 P 是线段 AC(端点除外)上的动点时,试探究:点 M 到 x 轴的距离h 与线段 BH 的长是否总相等?请说明理由;两块纸板重叠部分(图中的阴
14、影部分)的面积 S 是否存在最大值?若存在,求出这个最大值及 S 取最大值时点 P 的坐标;若不存在,请说明理 由(第第28题题)17.如图所示,在平面直角坐标系中二次函数 y=a(x-2)2-1 图象的顶点为 P,与 x 轴交点为 A、B,与 y 轴交点为 C连结 BP 并延长交 y 轴于点D.(1)写出点 P 的坐标;(2)连结 AP,如果APB 为等腰直角三角形,求 a 的值及点 C、D 的坐标;(3)在(2)的条件下,连结 BC、AC、AD,点 E(0,b)在线段 CD(端点 C、D 除外)上,将BCD 绕点 E 逆时针方向旋转 90,得到一个新三角形设该三角 形与ACD 重叠部分的面
15、积为 S,根据不同情况,分别用含 b 的代数式表示 S选择其中一种情况给出解答过程,其它情况直接写出结果;判断当 b 为何 值时,重叠部分的面积最大?写出最大值l0 x-1-2-3-4-4-3-2-11243y 5123AO G EBPI CxyM(第 24 题图)NIIH D F学 海 无 涯 18.解:(1)由直角三角形纸板的两直角边的长为 1 和 2,知 A,C 两点的坐标分别为(1,2),(2,1)设直线 AC 所对应的函数关系式为 y kx b 2 分有解得k b 2,k 1,2k b 1b 3 4 分所以,直线 AC 所对应的函数关系式为 y x 3 (2)点 M 到 x 轴距离h
16、 与线段 BH 的长总相等 因为点C 的坐标为(2,1),所以,直线OC 所对应的函数关系式为 y 1 x 2又因为点 P 在直线 AC 上,所以可设点 P 的坐标为(a,3 a)过点 M 作 x 轴的垂线,设垂足为点 K,则有 MK h 6 分因为点 M 在直线OC 上,所以有 M(2h,h)因为纸板为平行移动,故有 EF OB,即 EF GH 又 EF PF,所以 PH GH 法一:故RtMKG RtPHG RtPFE,从而有GKGHEF1MKPHPF211112222得GK MK h,GH PH(3 a)131322所以OG OK GK 2h h h 22又有OG OH GH a(3 a
17、)(a 1)8 分33所以h(a 1),得h a 1,而 BH OH OB a 1,22从而总有h BH 10 分1122法二:故RtPHG RtPFE,可得 GH EF 1 PHPF2故GH PH(3 a)1322所以OG OH GH a(3 a)(a 1)3 2故G 点坐标为(a 1),0 设直线 PG 所对应的函数关系式为 y cx d,AOPI CxyM(第 24 题答图)G K B ENIIH F学 海 无 涯 则有20 c(a 1)d33 a ca d,解得c 2d 3 3a所以,直线 PG 所对的函数关系式为 y 2x(33a)8 分将点 M 的坐标代入,可得h 4h(33a)解
18、得h a 1 而 BH OH OB a 1,从而总有h BH 10 分21由知,点 M 的坐标为(2a 2,a 1),点 N 的坐标为 a,a S SONHONG S 1 NH OH 1 OG h 1 1 a a 1 3a 3(a 1)2222221331 3 23 a2 a a 2242 2 8 12 分3328当 a 时,S 有最大值,最大值为 3 3 2 2 S 取最大值时点 P 的坐标为,14 分19.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆 例如线段 AB 的最小覆盖圆就是 以线段 AB 为直径的圆(1)请分别作出图 1 中两个三角形的最小覆盖圆(要求用尺规作图,
19、保留作图痕迹,不写作法);AA80100BCBC(第 25 题图 1)2探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);3某地有四个村庄 E,F,G,H(其位置如图 2 所示),现拟建一个电视信号中转站,为了使这 四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中 转站应建在何处?请说明理由GHEF32.4 49.8 53.844.047.147.8 35.150.0(第 25 题图 2)学 海 无 涯 4 分由HEF HEG GEF 47.8 35.1 82.9,EHF 50.0,EFH 47.1,故EFH 是锐角三角形,所以其最
20、小覆盖圆为EFH 的外接圆,设此外接圆为O,直线 EG 与O 交于点 E,M,则EMF EHF 50.0 53.8 EGF 故点G 在O 内,从而O 也是四边形 EFGH 的最小覆盖圆车之间的距离为 y(km),图中的折线表示 y 与 x 之间的函数关系根据图象进行以下探究:信息读取信息读取1甲、乙两地之间的距离为 km;2请解释图中点 B 的实际意义;图象理解图象理解3求慢车和快车的速度;4求线段 BC 所表示的 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;问题解决问题解决5若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同在第一列快车与慢车相遇 30 分钟 后,第二列快
21、车与慢车相遇求第二列快车比第一列快车晚出发多少小时?19.解:(1)如图所示:AABCCB80100(第 25 题答图 1)(注:正确画出 1 个图得 2 分,无作图痕迹或痕迹不正确不得分)(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;6 分若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的 圆 8 分(3)此中转站应建在EFH 的外接圆圆心处(线段 EF 的垂直平分线与线段 EH 的垂直平分线的交 点处)10 分理由如下:HEF44.047.147.8 35.150.0所以中转站建在EFH 的外接圆圆心处,能够符合题中要求(第 25 题答图 2)
22、12 分20.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 x(h),两MG32.4 49.8 53.8BCDOy/km900 A12 x/h4(第 28 题)学 海 无 涯 1 分2 分20.解:(1)900;2图中点 B 的实际意义是:当慢车行驶 4h 时,慢车和快车相遇 3由图象可知,慢车 12h 行驶的路程为 900km,90012所以慢车的速度为 75(km/h);3 分当慢车行驶 4h 时,慢车和快车相遇,两车行驶的路程之和为 900km,所以慢车和快车行驶的速度之和900为 225(km/h),所以快车的速度为 150km/h 4 4 分900
展开阅读全文