第I册第7章结构稳定与极限-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第I册第7章结构稳定与极限-课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 稳定 极限 课件
- 资源描述:
-
1、刚性小球平衡状态刚性小球平衡状态稳定平衡状态稳定平衡状态不稳定平衡状态不稳定平衡状态随遇平衡状态随遇平衡状态根据受力状态根据受力状态稳定问题分类:稳定问题分类:1.完善体系:完善体系:理想中心受压杆,无初曲率或弯曲变形理想中心受压杆,无初曲率或弯曲变形分分支支点点失失稳稳失稳前后平衡状态的变形性质发生变化失稳前后平衡状态的变形性质发生变化结构结构2.非完善体系非完善体系 受压杆受压杆有初曲率有初曲率或受偏心或受偏心荷载,为荷载,为压弯联合压弯联合受力状态受力状态FP(a)极值点失稳极值点失稳失稳前后变形性质没有变化失稳前后变形性质没有变化FPcr cr突突跳跳失失稳稳FPcr cr突跳失稳的力
2、突跳失稳的力-位移关系示意图位移关系示意图突突跳跳失失稳稳 由于实际结构刚度都很大,变形和杆件尺寸由于实际结构刚度都很大,变形和杆件尺寸相比十分微小,因此作受力分析列平衡方程时相比十分微小,因此作受力分析列平衡方程时都忽略变形影响。因此线弹性材料力都忽略变形影响。因此线弹性材料力-位移成正位移成正比,叠加原理适用。比,叠加原理适用。2-1)静力法静力法2-1-2)例一)例一 试用静力法分析图示结构,求临界试用静力法分析图示结构,求临界荷载。荷载。sinBh 0 AM由得P6sin0EIF haP6sinEIFahPcr6EIFah稳定方程稳定方程 Bh小位移 0 AM由得P60EIF ha非零
3、解非零解Pcr6EIFah稳定方程稳定方程PF例二例二 完善体系如图所示,试按线性理论求临完善体系如图所示,试按线性理论求临界荷载界荷载F FPcrPcr。设体系发生如下的变形设体系发生如下的变形取取BC为隔离体,由为隔离体,由 MB=0,得得或或再由整体平衡再由整体平衡 MA=0,得得因为因为y1、y2不能全部为零,因此不能全部为零,因此Fyyk y lP2111-+=0 k l FyF y1P1P2-+=0(1)k l Fyk ly1P1222-+=0(2)k lFFk lFk l1PP1P2=0(3)2稳定方程稳定方程将将k1、k2 代入(代入(3 3)式,展开后得)式,展开后得由上式可
4、求得:由上式可求得:因此因此FklFkl22PP5+3=0 FklFklP1P20.6974.303FklPcr0.697 22lEI 224lEI 224lEI EIFl2Pcr2 EI,lFPFPcr根据形常数根据形常数lEIk31 1P,0 0kFyyx ylx FPcrEI,lFPcrEI,lEI,lEA=EI,lEI,lFPcr稳定平衡状态稳定平衡状态不稳定平衡状态不稳定平衡状态随遇平衡状态随遇平衡状态能量取能量取极小值极小值2-2)能量法能量法2-2-1)刚性小刚性小球的稳球的稳定能量定能量准则准则能量取能量取极大值极大值能量取能量取驻值驻值2-2-2)弹性结构的稳定能量准则弹性结
5、构的稳定能量准则2-2-3)l例例1.求图示有初偏离角求图示有初偏离角 体系的的临界荷体系的的临界荷载载 cos/hl )sin(lBx2-2-4)能量法举例能量法举例 sin0lBx By)cos(lhDyBy sin)sin(3333N lhEIhEIFDx变形能变形能V 23Nsin)sin(2321 lhEIFVDx外力势能外力势能VP P )cos(PPP lhFFVBy体系的总势能体系的总势能V=V +VP P )cos(sin)sin(23P23 lhFlhEIV 如何计算如何计算?应变能等于外力功应变能等于外力功.根据定义可得根据定义可得由体系的总势能的驻值条件得:由体系的总势
6、能的驻值条件得:0)sin()cos(sin)sin(3P23 lFlhEIV )sin(sin1)cos(33P lhEIF则:则:cos33PlhEIF 如果如果 =0:)cos(sin)sin(23P23 lhFlhEIV )sin(sin1)cos(3)(3P EIlhFF令:令:To 41 )sin(sin1)cos(33P lhEIF0)(F 31sin)sin(233233Pcrsin13)sin(sin1)cos(3 lhEIlhEIF令:令:得:得:因此因此 为求极值为求极值2132)sin1()cos(设:设:1EIlhF33Pcr23323Pcrsin13 EIlhF h
展开阅读全文