书签 分享 收藏 举报 版权申诉 / 69
上传文档赚钱

类型第60讲直线与圆锥曲线的位置关系课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4710244
  • 上传时间:2023-01-03
  • 格式:PPT
  • 页数:69
  • 大小:3.72MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第60讲直线与圆锥曲线的位置关系课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    60 直线 圆锥曲线 位置 关系 课件
    资源描述:

    1、1能用坐标法解决简单的直线与圆锥 曲线的位置关系等问题2理解数形结合思想、方程思想的应用1直线与圆锥曲线的位置关系的判定(1)直线与椭圆的位置关系的判定方法 将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程,若 0,则直线与椭圆_;若 =0,则直线与椭圆_;若 0时,直线与双曲线_;当 =0时,直线与双曲线_;当 0)的弦AB的中点为M(),则 =_.22xa22yb0 x0yABk2y00 xy,ABk2020b xa y0py 一一 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系素材素材1 二二 中点弦和弦长问题中点弦和弦长问题素材素材2 三三 直线与圆锥曲线的综合问题直线

    2、与圆锥曲线的综合问题素材素材3备选例题备选例题 1.直线与圆锥曲线位置关系探究方法.直线与圆锥曲线的位置关系,从几何角度来看有三种:相离、相交和相切.从代数角度一般通过他们的方程来研究:设直线l:Ax+By+C=0,二次曲线C:f(x,y)=0.联立方程组 Ax+By+C=0 f(x,y)=0,消去y(或x)得到一个关于x(或y)的方程ax2+bx+c=0(或ay2+by+c=0),然后利用方程根的个数判定,同时应注意如下五种情况:(1)对于椭圆来说,a不可能为0,即直线与椭圆有一个公共点,直线与椭圆必相切;反之,直线与椭圆相切,则直线与椭圆必有一个公共点.(2)对于双曲线来说,当直线与双曲线

    3、有一个公共点时,除了直线与双曲线相切外,还有直线与双曲线相交,此时直线与双曲线的渐近线平行.(3)对于抛物线来说,当直线与抛物线有一个公共点时,除了直线与抛物线相切外,还有直线与抛物线相交,此时直线与抛物线的对称轴平行或重合.(4)0直线与双曲线相交,但直线与双曲线相交不一定有0,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0是直线与双曲线相交的充分条件,但不是必要条件.(5)0直线与抛物线相交,但直线与抛物线相交不一定有0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0也仅是直线与抛物线相交的充分条件,但不是必要条件.2.数形结合思想的应用.要注意数形

    4、结合思想的运用.在做题时,最好先画出草图,注意观察、分析图形的特征,将形与数结合起来.特别地:(1)过双曲线 外一点P(x0,y0)的直线与双曲线只有一个公共点的情况如下:P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;22221xyabP点在两渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;P为原点时,不存在这样的直线.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.3.特殊弦问题探究方法.(1)若弦过焦点时(焦点弦问题),焦点弦的弦长的计算一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用焦半径公式求解.(2)若问题涉及弦的中点及直线斜率问题(即中点弦问题),可考虑“点差法”(即把两点坐标代入圆锥曲线方程,然后两式作差),同时常与根和系数的关系综合应用.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第60讲直线与圆锥曲线的位置关系课件.ppt
    链接地址:https://www.163wenku.com/p-4710244.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库