极限的概念课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《极限的概念课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 概念 课件
- 资源描述:
-
1、目录目录学习要求学习要求1.1.理解极限的概念;熟练掌握基本初等函数在理解极限的概念;熟练掌握基本初等函数在自变量的某个过程中的极限。自变量的某个过程中的极限。2.2.掌握函数在一点极限存在的充要条件,会求掌握函数在一点极限存在的充要条件,会求分段函数在分段点的极限。分段函数在分段点的极限。1.2 极极 限限目录目录 割圆求周长割圆求周长思路:思路:利用圆的内接正多边形近似替代圆的周长利用圆的内接正多边形近似替代圆的周长 随着正多边形边数的增多,近似程度会越好。随着正多边形边数的增多,近似程度会越好。问题:若正多边形边数问题:若正多边形边数n n无限增大,无限增大,两者之间的关系如何?两者之间
2、的关系如何?我国古代数学家刘徽用割圆术我国古代数学家刘徽用割圆术,初步解决了这个问题。初步解决了这个问题。1.1.求圆的周长问题求圆的周长问题一、极限概念的引入一、极限概念的引入目录目录割圆术:割圆术:“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”刘徽刘徽目录目录割圆术:割圆术:“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”刘徽刘徽目录目录割圆术:割圆术:“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至
3、于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之
4、弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录“割之弥细,所割之弥细,所失弥少,割之又失弥少,割之又割,以至于不可割,以至于不可割,则与圆周合割,则
5、与圆周合体而无所失矣体而无所失矣”割圆术:割圆术:刘徽刘徽目录目录通过上面演示观察得通过上面演示观察得:若正多边形边数若正多边形边数n无限增大,则无限增大,则 正多边形周长无正多边形周长无 限接近于圆的周长。限接近于圆的周长。无限接近这种变化趋势无限接近这种变化趋势=数学上的极限数学上的极限 目录目录nan1;,1,41,31,21,1n2 2、求数列的变化趋势、求数列的变化趋势例例解:解:数列对应着数轴上一个点列数列对应着数轴上一个点列.可看作一动点在数轴上依次取可看作一动点在数轴上依次取.,1,31,21,1321naaaan 21413101.01,无限接近于无限接近于无限增大时无限增大
6、时当当nann 对于对于“无限接近无限接近”这种变化趋势这种变化趋势 =数学上的极限数学上的极限通过上面演示观察得通过上面演示观察得:目录目录的极限的极限时时二二)(,.xfx,x即:即:?x1 xy10引例引例:讨论讨论 当当x+时时,函数函数 的变化趋势。的变化趋势。Oxyxy1x1x2x31y2y3y对于对于“无限接近无限接近”这种变化趋势这种变化趋势 =数学上的极限数学上的极限目录目录.)()()b,)x(f1时时的的极极限限当当为为函函数数称称,则则常常数数某某个个确确定定的的常常数数无无限限趋趋近近于于增增大大时时,函函数数取取负负值值且且绝绝对对值值无无限限有有定定义义,当当在在
7、区区间间(设设函函数数定定义义 xxfAAxfxAxfxAxfx)(,)(lim 或或记作记作的的极极限限的的定定义义时时)(.1xfx 2定定义义),a(x 正正),(3定定义义 x AxfxAxfx )(,)(lim 或或记作记作AxfxAxfx)(,)(lim 或或记作记作目录目录xyarctan,2arctanlim:xx由图形可知由图形可知.2arctanlim:xx同理可知同理可知2y 2y.时时的的极极限限、数数当当根根据据图图形形写写出出反反正正切切函函 xx那那?x例例目录目录.)(lim)(lim)(lim:1.1AxfxfAxfxxx 的的充充分分必必要要条条件件是是定定
展开阅读全文