椭圆的简单几何性质3课时课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《椭圆的简单几何性质3课时课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 简单 几何 性质 课时 课件
- 资源描述:
-
1、椭圆的定义椭圆的定义图形图形标准方程标准方程焦点坐标焦点坐标 a,b,c的关系的关系 焦点位置的焦点位置的判断判断122(220)MFMFaac22200(,)acb acab22221 0 xyabab22221 0yxabab12yoFFMx1oFyx2FMcabM椭圆椭圆 简单的几何性质简单的几何性质12222byax范围:范围:,122ax得:得:122 by -axa,-byb 椭圆落在椭圆落在x=a,y=b围成的矩形中(如图)围成的矩形中(如图)oyB2B1A1A2F1F2cab1.观察:观察:x,y的范围?的范围?2.思考:如何用代数思考:如何用代数方法解释方法解释x,y的范围?
2、的范围?-axa,-byb 一一.范围范围二、椭圆的顶点二、椭圆的顶点22221(0),xyabab在中令令 x=0 x=0,得,得 y=y=?,?,说明椭圆与说明椭圆与 y轴的交点(轴的交点(),),令令 y=0y=0,得,得 x=x=?,说明椭圆与说明椭圆与 x轴的交点(轴的交点()。)。*顶点顶点:椭圆与它的对称椭圆与它的对称轴的四个交点,叫做椭圆的轴的四个交点,叫做椭圆的顶点。顶点。oxyB1(0,b)B2(0,-b)A1A2(a,0)0,ba,0*长轴长轴、短轴短轴:线段线段A A1 1A A2 2、B B1 1B B2 2分别叫做椭圆的分别叫做椭圆的长轴和短轴。长轴和短轴。a a、
3、b b分别叫做椭圆的分别叫做椭圆的长半长半轴长轴长和和短半轴长短半轴长。焦点总在长轴上焦点总在长轴上!三三.椭圆的对称性椭圆的对称性YXOP1(-x,y)P2(-x,-y)P3(-x,-y)P(x,y)把把(X)换成换成(-X),方程不变方程不变,说明椭圆关于说明椭圆关于()轴对称;轴对称;把把(Y)换成换成(-Y),方程不变方程不变,说明椭圆关于说明椭圆关于()轴对称;轴对称;把把(X)换成换成(-X),(Y)换成换成(-Y),方程还是不变方程还是不变,说明椭圆关说明椭圆关于于()对称;对称;Y X 原点原点 所以,所以,坐标轴是椭圆的坐标轴是椭圆的对称轴,原点是对称轴,原点是椭圆的对称中心
4、。椭圆的对称中心。123-1-2-3-44y123-1-2-3-44y1 2 3 4 5-1-5-2-3-4x1 2 3 4 5-1-5-2-3-4x练习:根据前面所学有关知识画出下列图形练习:根据前面所学有关知识画出下列图形1162522yx142522yx(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 四四、椭圆的离心率、椭圆的离心率ace 离心率:离心率:椭圆的焦距与长轴长的比:椭圆的焦距与长轴长的比:叫做椭圆的离心率。叫做椭圆的离心率。11离心率的取值范围:离心率的取值范围:1 1)e e 越接近越接近 1 1,c c 就越接近就越接近 a a,从而,从而 b b就越小,就
5、越小,椭圆就越扁椭圆就越扁因为因为 a c 0a c 0,所以,所以0e 10e b)(ab)cea知识归纳知识归纳a2=b2+c2 )0(ba,标准方程标准方程范围范围对称性对称性顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的的关系关系22221(0)xyabab关于关于x x轴、轴、y y轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为长半轴长为a a,短半轴短半轴长为长为b.b.(ab)(ab)cea22221(0)xyabba(b,0)(b,0)、(-b,
6、0)(-b,0)、(0,a)(0,a)、(0,-a)(0,-a)(0,c)(0,c)、(0,-c)(0,-c)关于关于x x轴、轴、y y轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称长半轴长为长半轴长为a a,短半轴短半轴长为长为b.b.(ab)(ab)cea-a x a,-b y b-a y a,-b x b-a y a,-b x ba2=b2+c2 )0(baa2=b2+c2)0(ba)5,0(),5,0(21FF例题例题1:1:求椭圆求椭圆 9 x9 x2 2+4y+4y2 2=36=36的长轴和短轴的的长轴和短轴的长、离心长、离心 率、焦点和顶点坐标。率、焦点和顶点坐标
7、。椭圆的长轴长是椭圆的长轴长是:离心率离心率:焦点坐标是焦点坐标是:四个顶点坐标是四个顶点坐标是:)3,0(),3,0(),0,2(),0,2(2121BBAA椭圆的短轴长是椭圆的短轴长是:2a=62b=435ace解题步骤:解题步骤:1 1、将椭圆方程转化为标准方程求、将椭圆方程转化为标准方程求a a、b b:2 2、确定焦点的位置或长轴的位置、确定焦点的位置或长轴的位置.解:把已知方程化成标准方程解:把已知方程化成标准方程19422yx549,2,3cba练习练习:求椭圆求椭圆 16 x16 x2 2+25y+25y2 2=400=400的长轴和的长轴和短轴的长、离心率、焦点和顶点坐标。短
8、轴的长、离心率、焦点和顶点坐标。解:把已知方程化成标准方程解:把已知方程化成标准方程1452222yx31625,4,5cba椭圆的长轴长是椭圆的长轴长是:离心率离心率:6.053ace焦点坐标是焦点坐标是:)0,3(),0,3(21FF四个顶点坐标是四个顶点坐标是:)4,0(),4,0(),0,5(),0,5(2121BBAA椭圆的短轴长是椭圆的短轴长是:2a=102b=8例例2:2:求适合下列条件的椭圆的标准方程:求适合下列条件的椭圆的标准方程:(1 1)经过点)经过点(-3-3,0 0)、)、(0 0,-2-2););22194xy22194xy23解:解:方法一:方法一:设椭圆方程为设
9、椭圆方程为mxmx2 2nyny2 21 1(m m0 0,n n0 0,mnmn),),将点的坐标代入方程,求出将点的坐标代入方程,求出m m1/9,n1/9,n1/41/4。所以椭圆的标准方程为所以椭圆的标准方程为 方法二:方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,于是焦点在圆与坐标轴的交点就是椭圆的顶点,于是焦点在x x轴上,轴上,且点且点P P、Q Q分别是椭圆长轴与短轴的一个端点,故分别是椭圆长轴与短轴的一个端点,故a a3 3,b b2 2,所以椭圆的标准方程为,所以椭圆的标准方程为 (2 2)离心率为)
10、离心率为 ,经过点(,经过点(2,02,0)练习:练习:椭圆的一个顶点为 ,其长轴长是短轴长的2倍,求椭圆的标准方程02,A分析:分析:题目没有指出焦点的位置,要考虑两种位置 椭圆的标准方程为:;11422yx椭圆的标准方程为:;116422yx解:解:(1)当 为长轴端点时,2a1b02,A(2)当 为短轴端点时,,,2b4a02,A综上所述,椭圆的标准方程是 或 11422yx116422yx标准方程标准方程范围范围对称性对称性顶点坐标顶点坐标焦点坐标焦点坐标半轴长半轴长离心率离心率 a a、b b、c c的关的关系系22221(0)xyabab关于关于x x轴、轴、y y轴成轴对称;轴成
11、轴对称;关于原点成中心对称关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为长半轴长为a a,短半轴短半轴长为长为b.b.(ab)(ab)cea22221(0)xyabba(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)关于关于x x轴、轴、y y轴成轴对称;轴成轴对称;关于原点成中心对称关于原点成中心对称长半轴长为长半轴长为a a,短半轴短半轴长为长为b.b.(ab)(ab)cea-a x a,-b y b-a y a,-b x ba2=b2+c2 )0(baa2=b2+c2)0(ba二.求离心率题型一:定义法例1
12、.已知椭圆方程为 +=1,求椭圆的离心率;162x82y1.1.直接算出直接算出a a、c c带入公式求带入公式求e eF2(c,0)xoyF1(-c,0)Pca2.2.几何意义:几何意义:e e为为OPFOPF2 2的正弦值的正弦值3.3.已知已知a a2 2、c c2 2直接求直接求e e2 2 变式训练:若椭圆 +=1的离心率为1/2,求m的值.222cea221bea29x29ym4.4.已知已知a a2 2、b b2 2不算不算c c直接求直接求e e 题型二:方程法例2.根据条件,构造关于a,c,的齐次式,解出e即可。注意椭圆离心率范围是0eb0)+=1(ab0)的三个顶点为的三个
13、顶点为B B1 1 (0(0,-b)-b),B B2 2(0(0,b),A(a,0),b),A(a,0),焦点焦点F(c,0)F(c,0)且且B B1 1F FABAB2,2,求该椭圆的离心率。求该椭圆的离心率。变式训练22ax22byB B2 2(0(0,b)b)B B1 1(0(0,-b)-b)A(a,0)A(a,0)F(c,0)F(c,0)x xoy y1.知识点:求离心率的两种常规方法:(1)定义法:求a,c或a、c的关系;(2)方程法:根据已知条件,构造关于a,c的齐次式,解出e.2.思想方法:方程的思想,转化的思想小结2.若一个椭圆长轴的长度、短轴的长度和 焦距长成等差数列,求该椭
14、圆的离心率.巩固练习1.设椭圆的两个焦点分别为F1和F2,过F2作椭圆 长轴的垂线交椭圆于点P,若为F2PF1等腰直 角三角形,求椭圆的离心率.高考链接(2012新课标全国卷)设F1和F2是椭圆 +=1(ab0)的左、右焦点,P为直线 x=上一点,F2 P F1是底角为30的等腰三角形,求该椭圆的离心率。a2322ax22byF2(c,0)xoyF F1 1(-c,0)(-c,0)x=3a/2x=3a/2P302c2cc2c=3a/22c=3a/2 练习 2:已知一椭圆的短轴长与焦距长相等,求椭圆的离心率。1.1.椭圆以坐标轴为对称轴,离心率椭圆以坐标轴为对称轴,离心率 ,长轴长为,长轴长为6
15、 6,则椭圆的方程则椭圆的方程 为为()32e 120y36x22 15y9x22 15922 xy120y36x22 1203622 xy(A)(B)(C)(D)15y9x22 或或或或C2.若某个椭圆的长轴、短轴、焦距依次成等若某个椭圆的长轴、短轴、焦距依次成等差数列,则其离心率差数列,则其离心率e=_3.3.已知椭圆的两个焦点为已知椭圆的两个焦点为F F1 1和和F F2 2,A A为椭圆上一为椭圆上一点点 ,且,且AFAF1 1AFAF2 2,AFAF1 1F F2 2=60=60,求该椭圆的,求该椭圆的离心率。离心率。已知椭圆 的离心率 ,求 的值 19822ykx21ek21e4k
16、由 ,得:解:解:当椭圆的焦点在 轴上时,得 82 ka92b12 kcx 当椭圆的焦点在 轴上时,得 92a82 kbkc12y21e4191k45k由 ,得 ,即 满足条件的 或 4k45k已知椭圆 的离心率 ,求 的值)(111522kkykx21ek例:例:点点M(x,y)M(x,y)与定点与定点F(4,0)F(4,0)的距离和它到定直线的距离和它到定直线l l:x=:x=的距离的比是常数的距离的比是常数 ,求点,求点M M的轨迹的轨迹。42554xyoFMlF1l(椭圆的第二定义椭圆的第二定义)准线方程:准线方程:Cxa2 解:解:如图,设如图,设M(x,y),d是点是点M到直线到直
展开阅读全文