书签 分享 收藏 举报 版权申诉 / 37
上传文档赚钱

类型时间数列分析课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4702442
  • 上传时间:2023-01-02
  • 格式:PPT
  • 页数:37
  • 大小:734.25KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《时间数列分析课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    时间 数列 分析 课件
    资源描述:

    1、Time Series AnalysisBenefits and Uses of Time Series Benefits of time series Monitor sales performance over time remove variation in monthly sales caused by calendar differences and seasonality that can conceal potential problems with sales Accurately determine the direction and rate of growth/decli

    2、ne in sales Quickly identify changes in sales trends and correlate them to factors affecting sales industry,company,competition Improve decision making regarding sales and marketing actions Uses of time series Assess current sales performance and evaluate the effectiveness of sales programs Determin

    3、e underlying sales trend and project year end sales Establish appropriate budgets for next year and estimate monthly budget spreadsTime series analysis is the primary sales analysis technique at A-B2023-1-22Time Series Analysis What is Time Series Analysis?How are Time Series plots developed?What ar

    4、e the advantages of Time Series Analysis?What are Time Series used for?2023-1-23What is Time Series Analysis?Time series analysis is a statistical technique used to analyze and monitor sales volume over time.2023-1-24Why Time Series?Beer Sales050100150200250199819992000200120022003Thousand Barrels B

    5、eer sales are highly seasonal It is very difficult to evaluate monthly sales over time.2023-1-25How do time series work?Monthly variation in sales is caused by two major factors Seasonality Selling Days(calendar effects)Time Series technique statistically removes the effects of these two factors Tim

    6、e Series technique uses the X-11 procedure for seasonal adjustments The X-11 procedure was developed by the U.S.Bureau of Census in the 1950s.It was brought to A-B in the early 1960s and has become the standard for reporting sales.2023-1-26How do time series adjust sales?A selling day adjustment fac

    7、tor for each month is computed and applied to the raw sales This factor allows you to compare months as if they had the same number of selling days e.g.accurately compare the June this year vs.June last year A seasonal factor is computed and applied to the selling day adjusted sales This factor,when

    8、 applied,gives you monthly data directly comparable to any other month e.g.accurately compare June this year with May this year2023-1-27Selling Days All other things being equal,sales in Aug-03 would decrease 4.8%because of one less selling day.In order to compare the two months Aug-03 sales will ha

    9、ve to be adjusted up+4.8%.SMTWTFSSMTWTFS121231.00.01.01.00.03456789456789100.01.01.01.01.01.00.00.01.01.01.01.01.00.010111213141516111213141516170.01.01.01.01.01.00.00.01.01.01.01.01.00.017181920212223181920212223240.01.01.01.01.01.00.00.01.01.01.01.01.00.024252627282930252627282930310.01.01.01.01.0

    10、1.00.00.01.01.01.01.01.00.0310.0August 2003August 2002Aug-2003 has 21 selling daysAug-2002 has 22 selling days2023-1-28Seasonality Seasonality is expressed as an index for a month compared to an average month.A month where sales were 20%higher than average would have a seasonal factor of 120.A month

    11、 which was 10%lower than average would have a seasonal factor of 90.JanFebMarApr MayJunNo Seasonality100100100100100100Strong Seasonality607580120140120Jul Aug SepOct Nov DecNo Seasonality100100100100100100Strong Seasonality118807562120150020406080100120140160JanFebMarAprMayJunJulAugSepOctNovDecStro

    12、ng SeasonalityNo Seasonality2023-1-29Adjusting Sales Raw Sales X Selling Day Factor Seasonal FactorSeasonally Adjusted Sales=MonthActual Sales(M bbls)Selling Day FactorSeasonal FactorAdjusted SalesJun-03211X1.0041.210=175 Jul-03221X0.9581.212=175 Aug-03196X1.0541.190=174 Sep-03160X1.0040.948=169 202

    13、3-1-210How do time series work?Raw SalesSelling Day AdjustedSeasonally Adjusted2023-1-211Dissecting a Time Series Plot 0200400600800100012001400160018002000199419951996199719981999Annualized Sales in M bblsAnnualized Sales tells us how big the market is.Trend Line tells us the direction of sales bas

    14、ed on past&present performanceIrregular variations shows us the impact of market place actionsSTRs;Ontario STCsData Description tells us the type of data plotted2023-1-212Advantages of Time Series Advantages of time series:Removes variation in monthly sales caused by calendar differences and seasona

    15、lity Help us to accurately estimate the direction and rate of sales growth/decline They are an improvement over other methods such as year-over-year growth or moving averages because they show us what is happening sooner an early warning of changing sales conditions Time series significantly improve

    16、 decision making Allows us to take corrective action sooner Allows us to take the right corrective action Helps to establish appropriate sales objectives2023-1-213Advantages of Time Series If the time series shows a relative smooth pattern from one year to the next the trend and the year over year g

    17、rowth would provide roughly the same reading.But,if there was a significant market event or change,the year over year trends will be misleading051015202519981999+50%2023-1-214Misleading Growth Rates024681012141619981999Positive Trend:Flat%Change0%024681012141619981999Trend Flat;Positive%Change+21%20

    18、23-1-215More Misleading Growth Rates 024681012141619981999Trend Flat;Negative%Change-21%051015202519981999Trend Negative;Positive%Change+15%2023-1-216What are time series used for?At A-B we use time series to Assess current sales performance Develop current year sales projectionsPYE(projected year-e

    19、nd)Forecast next year sales develop budgets and monthly spreads Other quantitative sales analysis2023-1-217Assessing Sales Performance Beer Sales050100150200250199819992000200120022003Thousand BarrelsHow is our YTD performance?2023-1-218Assessing Sales PerformanceBeer Sales05001,0001,5002,0002,50019

    20、9819992000200120022003Annualized Sales in US bbls(in 1000s)Budget:2,160M bblsPYE:2,060M bbls%Change vs.Year AgoSep-03:+4.1%;SDA-0.9%YTD Sep-03:+1.2%;SDA+1.2%2023-1-219Beer Sales05001,0001,5002,0002,500199819992000200120022003Annualized Sales in US bbls(in 1000s)Estimating PYE If there is no change i

    21、n the business environment sales will continue on current trend.Points off the trend line can be used to estimate monthly sales.Underlying TrendPredicted2023-1-220Underlying Trend Underlying trend is a trend line that best describes the current sales growth rate.It is the collective representation o

    22、f all underlying factors that are influencing sales industry,competition,and company specific,etc.It is determined using a best-fit line to a set of points on the time series.The points are selected based on in-depth understanding of the underlying factors influencing sales,how they have changed ove

    23、r time,and how they will likely change in the future.Points of inflection on the time series often signal changes in the underlying factors and hence the underlying trend.2023-1-221Beer Sales05001,0001,5002,0002,500199819992000200120022003Annualized Sales in US bbls(in 1000s)Estimating PYEPredictedA

    24、ctual SalesPredictedSeasonally Adj.Sales Selling Day Factor X Seasonal FactorMonthly Sales=ActualTrend(AnnualizedSDAF SeasonalMonthPYE&Deseasonalized)EstimateJ120 120 F118 118 M138 138 A166 166 M195 195 J211 211 J221 221 A196 196 S160 160 O2,106 0.9590.932 12171 171 N2,110 1.1100.914 12145 145 D2,11

    25、3 1.0041.239 12217 217 2,059 2003 PYE Estimate(M bbls)2023-1-222Beer Sales05001,0001,5002,0002,5001998199920002001200220032004Annualized Sales in US bbls(in 1000s)%Change vs.Year AgoSep-03:+4.1%;SDA-0.9%YTD Sep-03:+1.2%;SDA+1.2%Establishing Budgets and Spreads Given our YTD Sep-2003 performance what

    26、 would be an appropriate budget for next year and how should that volume be spread by month?2023-1-223Establishing Budgets and Spreads Beer Sales2,12305001,0001,5002,0002,5001998199920002001200220032004Annualized Sales in US bbls(in 1000s)2003Trend(AnnualizedSDAF SeasonalMonth%SDA&Deseasonalized)Est

    27、imate vs.2003J120 2,117 1.0040.675 12119 +3.4%F118 2,121 1.0540.754 12126 +6.8%M138 2,124 0.9170.852 12165 +10.0%A166 2,128 1.0540.995 12167 +0.7%M195 2,131 1.0541.082 12182 -1.9%J211 2,135 0.9591.210 12225 +1.6%J221 2,138 1.0041.214 12215 +1.8%A196 2,142 1.0041.185 12211 +2.4%S160 2,146 1.0040.952

    28、12170 +6.2%O171 2,149 1.0540.932 12158 +1.9%N145 2,153 1.0040.914 12163 +2.2%D217 2,156 1.0041.239 12222 +2.0%2,059 2,123 +3.1%2004 Budget(M bbls)2023-1-224Another Example Using Time Series0.06.412.819.225.632.038.444.851.257.664.0Price IncreaseAnnualized STRs in M BBLS199819992000200120022003Elasti

    29、city CalculationP1:18.99;P2:20.45 i.e.+7%V1:44.5;V2:38.5 i.e.-14%Elasticity=-2.0Estimating the price elasticityPrice=P1Volume=V1Price=P2Volume=V22023-1-225Conclusions Time Series technique is a very useful sales analysis tool it is the standard for reporting and analyzing sales at A-B It is a powerf

    30、ul decision making tool for assessing sales performance,making accurate forecasts,and establishing appropriate budgets and spreads.2023-1-226Time Series Thru September3,552.005001,0001,5002,0002,5003,0003,5004,0004,5001998199920002001200220032004Annualized Sales Metric Tons in Thousands%Change:+61.2

    31、%+20.9%Change vs.Year AgoSep-03:-2.5%;SDA-7.2%YTD Sep-03:+9.0%;SDA+9.0%2004 Forecast:3,552.0M Met.Tons;+7.9%vs.032003 PYE:3,290.8M Met.Tons;+10.2%vs.02Trend+8.2%Shipments2023-1-227Time Series Thru OctoberShipments3,471.805001,0001,5002,0002,5003,0003,5004,0004,5001998199920002001200220032004Annualiz

    32、ed Sales Metric Tons in Thousands%Change:+61.2%+20.9%Change vs.Year AgoOct-03:-6.6%;SDA-6.6%YTD Oct-03:+7.9%;SDA+7.9%2004 Forecast:3,471.8M Met.Tons;+8.0%vs.032003 PYE:3,215.7M Met.Tons;+7.6%vs.02Trend+6.7%2023-1-228Qingdao RegionShipments772.501002003004005006007008009001998199920002001200220032004

    33、Annualized Sales Metric Tons in Thousands%Change:+1.9%+17.8%Change vs.Year AgoOct-03:-15.7%;SDA-15.7%YTD Oct-03:+2.5%;SDA+2.5%2004 Forecast:772.5M Met.Tons;+8.3%vs.032003 PYE:713.5M Met.Tons;+2.0%vs.02Trend+3.9%2023-1-229South RegionShipments630.201002003004005006007008001998199920002001200220032004

    34、Annualized Sales Metric Tons in Thousands%Change:+102.3%+47.8%Change vs.Year AgoOct-03:+6.9%;SDA+6.9%YTD Oct-03:+1.9%;SDA+1.9%2004 Forecast:630.2M Met.Tons;+3.9%vs.032003 PYE:606.7M Met.Tons;+2.4%vs.02Trend+3.1%2023-1-230North RegionShipments741.601002003004005006007008009001998199920002001200220032

    35、004Annualized Sales Metric Tons in Thousands%Change:+174.3%+11.0%Change vs.Year AgoOct-03:-5.7%;SDA-5.7%YTD Oct-03:+15.2%;SDA+15.2%2004 Forecast:741.6M Met.Tons;+7.8%vs.032003 PYE:687.9M Met.Tons;+14.0%vs.02Trend+8.8%2023-1-231Luzhong RegionShipments322.2010020030040050060019981999200020012002200320

    36、04Annualized Sales Metric Tons in Thousands%Change:-3.4%-9.2%Change vs.Year AgoOct-03:+10.1%;SDA+10.1%YTD Oct-03:+49.5%;SDA+49.5%2004 Forecast:322.2M Met.Tons;+48.4%vs.032003 PYE:217.1M Met.Tons;+49.8%vs.02Trend+42.9%2023-1-232Huaihai RegionShipments210.9050100150200250300199819992000200120022003200

    37、4Annualized Sales Metric Tons in Thousands%Change:+82.3%+14.6%Change vs.Year AgoOct-03:-28.6%;SDA-28.6%YTD Oct-03:-8.8%;SDA-8.8%2004 Forecast:210.9M Met.Tons;+2.4%vs.032003 PYE:206.0M Met.Tons;-8.4%vs.02Trend-4.1%2023-1-233East RegionShipments227.70501001502002503003504001998199920002001200220032004

    38、Annualized Sales Metric Tons in Thousands%Change:+74.7%+2.9%Change vs.Year AgoOct-03:-18.1%;SDA-18.1%YTD Oct-03:-7.5%;SDA-7.5%2004 Forecast:227.7M Met.Tons;-9.2%vs.032003 PYE:250.7M Met.Tons;-7.5%vs.02Trend-9.2%2023-1-234Southeast RegionShipments221.40501001502002503001998199920002001200220032004Ann

    39、ualized Sales Metric Tons in Thousands%Change:+56.6%Change vs.Year AgoOct-03:+7.9%;SDA+7.9%YTD Oct-03:+39.8%;SDA+39.8%2004 Forecast:221.4M Met.Tons;+20.2%vs.032003 PYE:184.1M Met.Tons;+41.3%vs.02Trend+35.2%2023-1-235Northeast RegionShipments159.20204060801001201401601801998199920002001200220032004An

    40、nualized Sales Metric Tons in Thousands%Change:+140.7%+29.1%Change vs.Year AgoOct-03:+12.9%;SDA+12.9%YTD Oct-03:+17.1%;SDA+17.1%2004 Forecast:159.2M Met.Tons;+16.7%vs.032003 PYE:136.3M Met.Tons;+15.6%vs.02Trend+17.3%2023-1-236Southwest RegionShipments70.40204060801001201998199920002001200220032004Annualized Sales Metric Tons in Thousands%Change:+41.1%Change vs.Year AgoSep-03:+3.7%;SDA-1.0%YTD Sep-03:+18.5%;SDA+18.5%2004 Forecast:70.4M Met.Tons;+17.6%vs.032003 PYE:59.8M Met.Tons;+16.8%vs.02Trend+12.4%2023-1-237

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:时间数列分析课件.ppt
    链接地址:https://www.163wenku.com/p-4702442.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库