微积分课件第八讲微分中值定理.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分课件第八讲微分中值定理.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 课件 第八 微分 中值 定理
- 资源描述:
-
1、 作业作业P88 习题习题4.1 5(1).7.8(2)(4).9(1).10(3).P122 综合题综合题:4.5.复习复习:P8088预习预习:P89952023-1-21应用导数研究函数性态应用导数研究函数性态局部性态局部性态 未定型极限未定型极限 函数的局部近似函数的局部近似整体性态整体性态 在某个区间上在某个区间上 函数的单调性、函数的极值函数的单调性、函数的极值 函数的凸性、渐近性、图形函数的凸性、渐近性、图形2023-1-22微分中值定理,包括:微分中值定理,包括:罗尔定理、拉格朗中值定理、罗尔定理、拉格朗中值定理、柯西中值定理、泰勒中值定理柯西中值定理、泰勒中值定理 微分中值定
2、理是微分学的理论基础。是微分中值定理是微分学的理论基础。是利用导数研究函数性质的理论依据。利用导数研究函数性质的理论依据。微分中值定理的共同特点是:微分中值定理的共同特点是:在一定的条件下,可以断定在所给区间在一定的条件下,可以断定在所给区间内至少有一点,使所研究的函数在该点具有内至少有一点,使所研究的函数在该点具有某种微分性质。某种微分性质。2023-1-23第八讲第八讲 微分中值定理微分中值定理一、费尔马一、费尔马(Fermat)定理定理二、罗尔二、罗尔(Rolle)定理定理三、拉格朗日三、拉格朗日(Lagrange)定理定理四、柯西四、柯西(Cauchy)定理定理2023-1-24).(
3、)()()()()(),(.)()(0000000或或极极小小值值点点的的极极大大值值点点为为并并称称或或极极小小值值取取得得极极大大值值在在则则称称函函数数或或有有若若定定义义有有的的某某邻邻域域在在点点设设函函数数fxxfxfxfxfxfxNxxNxxf 一、费尔马一、费尔马(Fermat)定理定理(一)极值的定义:(一)极值的定义:2023-1-250 x1xxyo)(xfy 极极大大值值)(0 xf极极小小值值)(1xf)(极大值点极大值点)(极极小小值值点点极值的研究是微积分产生的主要动力之一极值的研究是微积分产生的主要动力之一2023-1-260)(,)(,)(000 xfxxfx
4、xf则则必必有有可可导导在在点点并并且且取取得得极极值值在在点点设设函函数数(二)费尔马定理(二)费尔马定理 (极值必要条件极值必要条件).0)(200驻驻点点这这种种点点称称为为的的一一个个极极值值点点函函数数不不一一定定是是的的点点满满足足注注意意fxxf .0)(10必必要要条条件件是是可可导导函函数数取取得得极极值值的的注注意意 xf2023-1-27xyo3xy 0)0(32 yxy不不是是极极值值点点0 x驻驻点点未未必必是是极极值值点点!2023-1-28证证)0)(0)(:(00 xfxf且且只只须须证证明明.)(0处处取取得得极极大大值值在在点点不不妨妨设设xxf)()(0
5、xfxf 有有内内的的邻邻域域在在点点即即,),(000 xxx000)()()(xxxfxfxxf 考考察察0)()(000 xxxfxfxx0)()(000 xxxfxfxx2023-1-29并并且且有有都都存存在在和和所所以以存存在在因因为为,)()(,)(000 xfxfxf 0)()(lim)()(00000 xxxfxfxfxfxx0)()(lim)()(00000 xxxfxfxfxfxx0)(0 xf2023-1-210微分中值定理的引入微分中值定理的引入.,.,平平行行的的切切线线与与弦弦在在点点使使得得曲曲线线上上至至少少存存在在一一点点那那麽麽切切线线有有连连续续不不断断
6、且且其其上上各各点点都都平平面面曲曲线线ABCABCABAB(AB切切线线平平行行于于弦弦CAB2023-1-211xyC轴轴切切线线平平行行于于 xoab AB0)(f2023-1-212xoAB切切线线平平行行于于弦弦CAB)()()(fabafbf yab 2023-1-213xoAB切切线线平平行行于于弦弦CAB)()()()()()(gfagbgafbf y)(ag)(bg)(g)()()(btatfytgx :的的参参数数方方程程AB)(af)(bf)(f2023-1-214使使得得内内至至少少存存在在一一点点则则在在内内可可微微在在开开区区间间上上连连续续在在闭闭区区间间满满足足
7、条条件件:设设函函数数,),(),()()3(;),()2(;,)1()(babfafbabaxf)(0)(baf 二、罗尔二、罗尔(Rolle)(Rolle)定理定理2023-1-215怎样证明罗尔定理怎样证明罗尔定理?先利用形象思维先利用形象思维去找出一个去找出一个C点来!点来!想到利用闭区间上连续函数想到利用闭区间上连续函数的最大最小值定理!的最大最小值定理!CxyoabABC2023-1-216.,)(,)1(mMbaxf和和最最小小值值最最大大值值上上达达到到在在闭闭区区间间知知由由条条件件.,)(,)1(baxMxfmM 则则若若,0)()(baxxfxf 常常数数有有内内任任取取
8、一一点点作作为为可可在在因因此此,),(,ba0)(f,)2(mM 若若).(,)()(afmMbfaf不等于不等于至少有一个至少有一个和和知知由由).(afM 不不妨妨设设罗尔定理的证明:罗尔定理的证明:2023-1-217)()(baMf 即即处处达达到到某某点点内内部部只只能能在在最最大大值值这这就就是是说说从从而而有有因因为为,),(,).(),()(baMbfMafbf 于于是是由由费费尔尔马马定定理理知知因因而而是是极极大大值值内内部部达达到到且且在在是是函函数数的的最最大大值值又又存存在在所所以以因因为为.,),(,)(.)(),(baffba )(0)(baf 2023-1-2
9、18使使得得内内至至少少存存在在一一点点则则在在内内可可微微在在开开区区间间上上连连续续在在闭闭区区间间满满足足条条件件:设设函函数数,),(,),()2(;,)1()(bababaxf)()()()(bafabafbf 三、拉格朗日三、拉格朗日(Lagrange)定理定理2023-1-219怎样证明拉格朗日定理怎样证明拉格朗日定理?拉格朗日定理若添加条件拉格朗日定理若添加条件:)()(bfaf 则收缩为罗尔定理;则收缩为罗尔定理;罗尔定理若放弃条件罗尔定理若放弃条件:)()(bfaf 则推广为拉格朗日定理。则推广为拉格朗日定理。知识扩张所遵循的规律之一就是将欲探知识扩张所遵循的规律之一就是将
10、欲探索的索的新问题新问题转化为已掌握的转化为已掌握的老问题老问题。因此想到利用罗尔定理!因此想到利用罗尔定理!2023-1-220 xo0)(:kakxafyAB方方程程弦弦CABabafbfk )()(yab 满足罗尔定理条件满足罗尔定理条件弦线与弦线与f(x)在端点处相等在端点处相等kakxafxf )()(设设函数函数2023-1-221)()()()()()(axabafbfafxfxF ).()(,),(,)(:bFaFbabaxF 且且可可导导内内在在上上连连续续在在容容易易验验证证拉格朗日定理的证明:拉格朗日定理的证明:构造辅助函数构造辅助函数使使得得内内至至少少存存在在一一点点
11、在在由由罗罗尔尔定定理理知知,),(,ba0)()()()(abafbffF abafbff )()()(拉格朗日中值公式拉格朗日中值公式2023-1-222abafbff )()()(拉格朗日公式各种形式拉格朗日公式各种形式)()()()(abfafbf )()()()(1212xxfxfxf xfxfxxf )()()(00 xxxfxfxxf )()()(000),(ba ),(ba ),(21xx ),(00 xxx )10(有限增量公式有限增量公式2023-1-223思思考考题题:有有什什麽麽区区别别?限限增增量量公公式式比比较较微微小小增增量量公公式式与与有有)()()()(000
12、 xxxfxfxxf xxxfxfxxf )()()(0002023-1-2240,xba上上任任意意取取定定一一点点在在)()()(00 xxfxfxf 条条件件满满足足拉拉格格朗朗日日中中值值定定理理上上或或在在,)(,00 xxxxxfbax .,)(上上恒恒为为常常数数在在则则上上恒恒为为零零在在若若bafbaxf 推论推论1:证证有有由由拉拉格格朗朗日日中中值值定定理理,0)()(0 xfxf之之间间与与在在0 xx 0)(f已已知知常常数数 )()(0 xfxf2023-1-225)()()(,),()(,是是常常数数其其中中有有则则有有若若CCxgxfbaxxgxfbax 推论推
13、论2:).(,),0)(0)(,单单调调减减少少上上单单调调增增加加在在则则有有若若bafxfxfbax 推论推论3:).(,),0)(0)(,严严格格单单调调减减上上严严格格单单调调增增在在则则有有若若bafxfxfbax 推论推论4:2023-1-226使使得得内内至至少少存存在在一一点点则则在在且且内内可可微微在在开开区区间间上上连连续续在在闭闭区区间间满满足足条条件件:设设函函数数,),(.0)(,),()2(;,)1()(),(baxgbabaxgxf )()()()()()()(bagfagbgafbf 四、柯西四、柯西(Cauchy)定理定理2023-1-227.0)()(agb
展开阅读全文