微积分入门讲义课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分入门讲义课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 入门 讲义 课件
- 资源描述:
-
1、 定积分第一节 定积分的概念与性质abxyo?A曲边梯形由连续曲线曲边梯形由连续曲线实例实例1 1 (求曲边梯形的面积)(求曲边梯形的面积))(xfy )0)(xf、x轴轴与与两两条条直直线线ax 、bx 所所围围成成.一、问题的提出)(xfy abxyoabxyo用矩形面积近似取代曲边梯形面积用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近显然,小矩形越多,矩形总面积越接近曲边梯形面积曲边梯形面积(四个小矩形)(四个小矩形)(九个小矩形)(九个小矩形)曲边梯形如图所示,曲边梯形如图所示,,1210bxxxxxabann 个分点,个分点,内插入若干内插入若干在区间在区间abxy
2、oi ix1x1 ix1 nx;,11 iiiiixxxxxnba长度为长度为,个小区间个小区间分成分成把区间把区间,上任取一点上任取一点在每个小区间在每个小区间iiixx,1 iiixfA )(为高的小矩形面积为为高的小矩形面积为为底,为底,以以)(,1iiifxx iniixfA )(1 曲边梯形面积的近似值为曲边梯形面积的近似值为iniixfA )(lim10 12,()max,(00)nxxxxxx当分割无限加细 记小区间的最大长度或者趋近于零或者时,曲边梯形面积为曲边梯形面积为实例实例2 2 (求变速直线运动的路程)(求变速直线运动的路程)思路思路:把整段时间分割成若干小段,每小段上
3、:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值分过程求得路程的精确值(1)分割)分割212101TtttttTnn 1 iiitttiiitvs )(部分路程值部分路程值某时刻的速度某时刻的速度(2)求和)求和iinitvs )(1(3)取极限)取极限,max21nttt iniitvs )(lim10 路程的精确值路程的精确值设设函函数数)(xf在在,ba上上有有界界,如如果果不不论论对对,ba在在,ba中任意插入中任意插
4、入若若干干个个分分点点bxxxxxann 1210把把区区间间,ba分分成成n个个小小区区间间,各各小小区区间间的的长长度度依依次次为为1 iiixxx,),2,1(i,在在各各小小区区间间上上任任取取一点一点i(iix ),),作作乘乘积积iixf)(),2,1(i并作和并作和iinixfS )(1,二、定积分的定义定义定义怎怎样样的的分分法法,baIdxxf)(iinixf )(lim10 被积函数被积函数被积表达式被积表达式积分变量积分变量积分区间积分区间,ba也也不不论论在在小小区区间间,1iixx 上上点点i 怎样的取法,怎样的取法,和和S总趋于总趋于确定的极限确定的极限I,在在区区
5、间间,ba上上的的定定积积分分,记为记为积分上限积分上限积分下限积分下限积分和积分和注意:注意:(1)积积分分值值仅仅与与被被积积函函数数及及积积分分区区间间有有关关,badxxf)(badttf)(baduuf)((3 3)当函数)当函数)(xf在区间在区间,ba上的定积分存在时,上的定积分存在时,而而与与积积分分变变量量的的字字母母无无关关.称称)(xf在区间在区间,ba上上可积可积.当当函函数数)(xf在在区区间间,ba上上连连续续时时,定理定理1 1定理定理2 2 设函数设函数)(xf在区间在区间,ba上有界,上有界,称称)(xf在在区区间间,ba上上可可积积.且且 只只 有有 有有
6、限限 个个 第第 一一 类类 的的间间 断断 点点,则则)(xf在在三、存在定理区区间间,ba上上可可积积.,0)(xf baAdxxf)(曲边梯形的面积曲边梯形的面积,0)(xf baAdxxf)(曲边梯形的面积曲边梯形的面积的负值的负值1A2A3A4A4321)(AAAAdxxfba 四、定积分的几何意义几何意义:几何意义:积取负号积取负号轴下方的面轴下方的面在在轴上方的面积取正号;轴上方的面积取正号;在在数和数和之间的各部分面积的代之间的各部分面积的代直线直线的图形及两条的图形及两条轴、函数轴、函数它是介于它是介于xxbxaxxfx ,)(例例1 1 利用定义计算定积分利用定义计算定积分
7、.102dxx 解解将将1,0n等等分分,分分点点为为nixi,(ni,2,1)小区间小区间,1iixx 的长度的长度nxi1 ,(ni,2,1)取取iix ,(ni,2,1)iinixf )(1 iinix 21,12iniixx nnini121 niin12316)12)(1(13 nnnn,121161 nn0 xn dxx 102iinix 210lim nnn121161lim.31 五、定积分 的性质证证 badxxgxf)()(iiinixgf )()(lim10 iinixf )(lim10 iinixg )(lim10 badxxf)(.)(badxxg badxxgxf)
8、()(badxxf)(badxxg)(.(此性质可以推广到有限多个函数作和的情况)(此性质可以推广到有限多个函数作和的情况)性质性质1 1 babadxxfkdxxkf)()(k为为常常数数).证证 badxxkf)(iinixkf )(lim10 iinixfk )(lim10 iinixfk )(lim10 .)(badxxfk性质性质2 2 badxxf)(bccadxxfdxxf)()(.补充补充:不论:不论 的相对位置如何的相对位置如何,上式总成立上式总成立.cba,例例 若若,cba cadxxf)(cbbadxxfdxxf)()(badxxf)(cbcadxxfdxxf)()(.
9、)()(bccadxxfdxxf(定积分对于积分区间具有可加性)定积分对于积分区间具有可加性)则则假设假设bca 性质性质3 3dxba 1dxba ab .则则0)(dxxfba.)(ba 证证,0)(xf,0)(if),2,1(ni,0 ix,0)(1 iinixf,max21nxxx iinixf )(lim10 .0)(badxxf性质性质4 4性质性质5 5如如果果在在区区间间,ba上上0)(xf,例例 1 1 比较积分值比较积分值dxex 20和和dxx 20的大小的大小.解解令令,)(xexfx 0,2 x,0)(xf,0)(02 dxxexdxex 02,02dxx 于是于是d
10、xex 20.20dxx 可以直接作出答案可以直接作出答案性质性质5 5的推论:的推论:证证),()(xgxf,0)()(xfxg,0)()(dxxfxgba,0)()(babadxxfdxxg于是于是 dxxfba)(dxxgba )(.则则dxxfba)(dxxgba )(.)(ba 如如果果在在区区间间,ba上上)()(xgxf,(1)dxxfba)(dxxfba )(.)(ba 证证,)()()(xfxfxf ,)()()(dxxfdxxfdxxfbababa 即即dxxfba)(dxxfba )(.说明:说明:可积性是显然的可积性是显然的.|)(xf|在区间在区间,ba上的上的性质性
11、质5 5的推论:的推论:(2)设设M及及m分分别别是是函函数数证证,)(Mxfm ,)(bababaMdxdxxfdxm).()()(abMdxxfabmba (此性质可用于估计积分值的大致范围)此性质可用于估计积分值的大致范围)则则 )()()(abMdxxfabmba .)(xf在在区区间间,ba上上的的最最大大值值及及最最小小值值,性质性质6 6曲边梯形的面积曲边梯形的面积 夹在两个矩形之间夹在两个矩形之间解解,sin)(xxxf 22cossincos(tan)()0 xxxx xxfxxx2,4x)(xf在在2,4 上上单单调调下下降降,例例2 不计算定积分不计算定积分 估计估计 的
12、大小的大小dxxx 24sin2424222(),(),42,2442sin22,441sin2.22Mfmfbaxdxxxdxx如如果果函函数数)(xf在在闭闭区区间间,ba上上连连续续,证证Mdxxfabmba )(1)()()(abMdxxfabmba 由闭区间上连续函数的介值定理知由闭区间上连续函数的介值定理知则则在在积积分分区区间间,ba上上至至少少存存在在一一个个点点 ,使使dxxfba)()(abf .)(ba 性质性质7 7(Th5.1 Th5.1 定积分第一中值定理)定积分第一中值定理)积分中值公式积分中值公式使使,)(1)(badxxfabfdxxfba)()(abf .)
13、(ba 在区间在区间,ba上至少存在一上至少存在一个点个点,即即积分中值公式的几何解释:积分中值公式的几何解释:xyoab)(f使使得得以以区区间间,ba为为以以曲曲线线)(xfy 底底边边,为曲边的曲边梯形的面积为曲边的曲边梯形的面积等于同一底边而高为等于同一底边而高为)(f的的一一个个矩矩形形的的面面积积。Th5.2(Th5.2(推广的积分第一中值定理)推广的积分第一中值定理)设函数设函数)(xf在区间在区间,ba上连续,并且设上连续,并且设x为为,ba上的一点,上的一点,xadxxf)(考察定积分考察定积分 xadttf)(记记.)()(xadttfx积分上限函数积分上限函数 如如果果上
14、上限限x在在区区间间,ba上上任任意意变变动动,则则对对于于每每一一个个取取定定的的x值值,定定积积分分有有一一个个对对应应值值,所所以以它它在在,ba上上定定义义了了一一个个函函数数,六、积分上限函数及其导数abxyo定定理理 如如果果)(xf在在,ba上上连连续续,则则积积分分上上限限的的函函数数dttfxxa )()(在在,ba上上具具有有导导数数,且且它它的的导导数数是是)()()(xfdttfdxdxxa )(bxa xx 证证dttfxxxxa )()()()(xxx dttfdttfxaxxa )()()(x x.)()(xadttfx dttfdttfdttfxaxxxxa )
15、()()(,)(xxxdttf由积分中值定理得由积分中值定理得xf )(,xxx xx ,0),(fx )(limlim00 fxxx ).()(xfx abxyoxx )(x x计算下列导数计算下列导数xtxtxtdtetdxddtedxddtedxdcos1211222)3()2()1(如如果果)(tf连连续续,)(xa、)(xb可可导导,则则dttfxFxbxa )()()()(的的导导数数)(xF 为为补充补充 )()()()(xaxafxbxbf 证证 dttfxFxaxb)()(0)()(0 dttfxb )(0)(,)()(0dttfxa )()()()()(xaxafxbxbf
16、xF )()()()(xbxadttfdxdxF例例1 1 求求.lim21cos02xdtextx 解解 1cos2xtdtedxd,cos12 xtdtedxd)(cos2cos xex,sin2cos xex 21cos02limxdtextx xexxx2sinlim2cos0 .21e 00分析:分析:这是这是 型不定式,应用洛必达法则型不定式,应用洛必达法则.定理定理2 2(原函数存在定理)(原函数存在定理)如果如果)(xf在在,ba上连续,则积分上限的函上连续,则积分上限的函数数dttfxxa )()(就是就是)(xf在在,ba上的一个上的一个原函数原函数.定理的重要意义:定理的
17、重要意义:(1)肯定了连续函数的原函数是存在的)肯定了连续函数的原函数是存在的.(2)初步揭示了积分学中的定积分与原函数之)初步揭示了积分学中的定积分与原函数之间的联系间的联系.定理定理 3 3(微积分基本公式)(微积分基本公式)如如果果)(xF是是连连续续函函数数)(xf在在区区间间,ba上上的的一一个个原原函函数数,则则)()()(aFbFdxxfba .又又 dttfxxa )()(也也是是)(xf的的一一个个原原函函数数,已知已知)(xF是是)(xf的一个原函数,的一个原函数,CxxF )()(,bax 证证七 牛顿莱布尼茨公式令令ax ,)()(CaaF 0)()(dttfaaa,)
18、(CaF),()()(aFxFdttfxa ,)()(CdttfxFxa 令令 bx).()()(aFbFdxxfba 牛顿牛顿莱布尼茨公式莱布尼茨公式)()()(aFbFdxxfba 微积分基本公式表明:微积分基本公式表明:baxF)(一个连续函数在区间一个连续函数在区间,ba上的定积分等于上的定积分等于它的任意一个原函数在区间它的任意一个原函数在区间,ba上的增量上的增量.注意注意当当ba 时,时,)()()(aFbFdxxfba 仍成立仍成立.求定积分问题转化为求原函数的问题求定积分问题转化为求原函数的问题.例例4 4 求求 .)1sincos2(20 dxxx原式原式 20cossin
展开阅读全文