动量守恒定律的典型应用课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《动量守恒定律的典型应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动量 守恒定律 典型 应用 课件
- 资源描述:
-
1、定律内容定律内容:一个系统不受外力或者所受外力之和为一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。这个零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。结论叫做动量守恒定律。动量守恒定律的表达式:动量守恒定律的表达式:/22/11221121/.4.30.2.1vmvmvmvmppppp动量守恒定律的条件动量守恒定律的条件:(1)系统的合外力为零(2)当内力远大于外力,作用时间非常短时。如碰撞、爆炸、反冲等。(3)当某一方向合外力为零时,这一方向的动量守恒。动量守恒定律的三性:动量守恒定律的三性:矢量性矢量性:参考系的同一性:参考系的同一性:整体性整体性:动量守恒定律的
2、典型应用动量守恒定律的典型应用1.子弹打木块类的问题子弹打木块类的问题:摩擦力(阻力)与相对位移的乘积等于系统摩擦力(阻力)与相对位移的乘积等于系统机械能(动能)的减少。机械能(动能)的减少。例例8:质量为:质量为m、速度为、速度为v0的子弹,水平打进的子弹,水平打进质量为质量为M、静止在光滑水平面上的木块中,并、静止在光滑水平面上的木块中,并留在木块里,求:留在木块里,求:(1)木块运动的速度多大?木块运动的速度多大?(2)若子弹射入木块的深度为)若子弹射入木块的深度为d,子弹对木,子弹对木块的作用力?块的作用力?v0vSS+d 如图所示的装置中,木块如图所示的装置中,木块B与水平桌面间的接
3、触是与水平桌面间的接触是光的,子弹光的,子弹A沿水平方向射入木块后留在木块内,将沿水平方向射入木块后留在木块内,将弹簧压缩到最短。现将子弹木块和弹簧合在一起作为弹簧压缩到最短。现将子弹木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中块到弹簧压缩至最短的整个过程中()A.动量守恒动量守恒 C.动量先守恒后不守恒动量先守恒后不守恒 B.机械能守恒机械能守恒 D.机械能先守恒后不守恒机械能先守恒后不守恒答案:答案:C例例2 2:如图,在光滑的水平台子上静止着一块长:如图,在光滑的水平台子上静止着一块长50cm
4、50cm质量为质量为1kg1kg的木板,另有一块质量为的木板,另有一块质量为1kg1kg的铜块,铜块的铜块,铜块的底面边长较小,相对于的底面边长较小,相对于50cm50cm的板长可略去不计。在的板长可略去不计。在某一时刻,铜块以某一时刻,铜块以3m/s3m/s的瞬时速度滑上木板,问铜块的瞬时速度滑上木板,问铜块和木板间的动摩擦因数至少是多大铜块才不会从板的和木板间的动摩擦因数至少是多大铜块才不会从板的右端滑落?(设平台足够长,木板在这段时间内不会右端滑落?(设平台足够长,木板在这段时间内不会掉落)(掉落)(g g取取10m/s10m/s2 2)解答:解答:选向右为正方向,铜块在木板上滑动时选向
5、右为正方向,铜块在木板上滑动时木块与铜块组成系统的动量守恒,木块与铜块组成系统的动量守恒,mvmv0 0=(M+m)v v=1.5m/s =(M+m)v v=1.5m/s 根据能量守恒:根据能量守恒:mgLvmMmv220)(212145.0)(2121220mgLvmMmv例例3 3:在光滑的水平轨道上有两个半径都是:在光滑的水平轨道上有两个半径都是r r的小球的小球A A和和B B,质量分别为,质量分别为m m和和2m2m,当两球心间的距离大于,当两球心间的距离大于L L(L L比比2r2r大的多)时,两球间无相互作用力,当两球大的多)时,两球间无相互作用力,当两球心距离等于或小于心距离等
6、于或小于L L时两球间有恒定斥力时两球间有恒定斥力F F,设,设A A球从球从较远处以初速较远处以初速V V0 0正对静止的正对静止的B B球开始运动(如图)于球开始运动(如图)于是两球不发生接触。则是两球不发生接触。则V V0 0必须满足什么条件?必须满足什么条件?解答:当两球恰好靠近又不发生接触时,解答:当两球恰好靠近又不发生接触时,最后两球的速度相等,最后两球的速度相等,由动量守恒:由动量守恒:mv0=3mv v=v0/3由能量守恒:由能量守恒:mrLFvrLFvmmv)2(3)2()3(32121020202.人船模型人船模型(二)、人船模型(二)、人船模型例例5:静止在水面上的小船长
7、为:静止在水面上的小船长为L,质,质量为量为M,在船的最右端站有一质量为,在船的最右端站有一质量为m的人,不计水的阻力,当人从最右的人,不计水的阻力,当人从最右端走到最左端的过程中,小船移动的端走到最左端的过程中,小船移动的距离是多大?距离是多大?SL-S0=MS m(L-S)例例6:静止在水面上的小船长为:静止在水面上的小船长为L,质,质量为量为M,在船的两端分别站有质量为,在船的两端分别站有质量为m1、m2的两人,不计水的阻力,当两的两人,不计水的阻力,当两人在船上交换位置的过程中,小船移人在船上交换位置的过程中,小船移动的距离是多大?动的距离是多大?m1m2SL-SL+S例例7:载人气球
8、原静止在高度为:载人气球原静止在高度为H的高空,气的高空,气球的质量为球的质量为M,人的质量为,人的质量为m,现人要沿气球,现人要沿气球上的软绳梯滑至地面,则绳梯至少要多长?上的软绳梯滑至地面,则绳梯至少要多长?HSH答案:(答案:(M+m)h/M。例:一个质量为M,底面长为b的三角形劈静止于光滑的水平桌面上,如图所示,有一质量为m的小球由斜面顶部无初速滑到底部时,劈移动的距离为多大?mMb解:劈和小球组成的解:劈和小球组成的系统在整个运动过程系统在整个运动过程中都不受水平方向外中都不受水平方向外力,所以系统在水平力,所以系统在水平方向平均动量守恒,方向平均动量守恒,劈和小球在整个过程劈和小球
9、在整个过程中发生的水平位移如中发生的水平位移如图所示,由图见劈的图所示,由图见劈的位移为位移为s s,小球的水,小球的水平位移为平位移为x x,xsbmM则由平均动量守则由平均动量守恒得:恒得:MS=mx S+x=bS=mb/(M+m)3.某一方向动量守恒某一方向动量守恒 例题:某炮车的质量为M,炮弹的质量为m,炮弹射出炮口时相对于地面的速度为v,设炮车最初静止在地面上,若不计地面对炮车的摩擦力,炮车水平发射炮弹时炮车的速度为 。若炮身的仰角为,则炮身后退的速度为 。解:将炮弹和炮身看成一个系统,在水平方向不受外力的作用,水平方向动量守恒。所以:0=mv-MV1 V1=mv/M0=mvcos-
10、MV2 V2=mvcos/M 4.动量守恒定律与归纳法专题:动量守恒定律与归纳法专题:例:例:人和冰车的总质量为人和冰车的总质量为MM,另有一木,另有一木球,质量为球,质量为m.M:m=31:2,m.M:m=31:2,人坐在静止于人坐在静止于水平冰面的冰车上,以速度水平冰面的冰车上,以速度v v(相对于(相对于地面)将原来静止的木球沿冰面推向正地面)将原来静止的木球沿冰面推向正前方的固定挡板,球与冰面、车与冰面前方的固定挡板,球与冰面、车与冰面的摩擦及空气阻力均可忽略不计,设球的摩擦及空气阻力均可忽略不计,设球与挡板碰撞后,反弹速率与碰撞前速率与挡板碰撞后,反弹速率与碰撞前速率相等,人接住球后
11、再以同样的速度(相相等,人接住球后再以同样的速度(相对于地面)将球沿冰面向正前方推向挡对于地面)将球沿冰面向正前方推向挡板,求人推多少次后才能不再接到球?板,求人推多少次后才能不再接到球?解:人在推球的解:人在推球的过程中动量守恒,过程中动量守恒,只要人往后退的只要人往后退的速度小于球回来速度小于球回来的速度,人就会继续推,直到人后退的速度,人就会继续推,直到人后退的速度跟球的速度相等或者比球回来的速度跟球的速度相等或者比球回来的速度小。设向右为正方向。则:的速度小。设向右为正方向。则:vv第第1次推时:次推时:第第2次推时:次推时:第第3次推时:次推时:第第n次推时:次推时:mvMV 10m
12、vMVmvMV21mvMVmvMV32mvMVmvMVnn1把等式的两边分别相加就会得到:把等式的两边分别相加就会得到:要想不接到球,要想不接到球,Vn=v所以:所以:当推了当推了8次,球回来时,人的速度还次,球回来时,人的速度还达不到达不到v,因此人需要推,因此人需要推9次。次。nmvMVmvnn)1(25.82mmMnnmvMvmvn)1(5.三个以上的物体组成的系统三个以上的物体组成的系统 例例1 1:在光滑水平面上有一质量在光滑水平面上有一质量m m1 1=20kg=20kg的小车,通过一根不可伸长的的小车,通过一根不可伸长的轻绳与另一质量为轻绳与另一质量为m m2 2=5kg=5kg
13、的拖车相连的拖车相连接,拖车的平板上放一质量为接,拖车的平板上放一质量为m m3 3=15kg=15kg的物体,物体与平板间的动摩擦因数的物体,物体与平板间的动摩擦因数为为=0.2.=0.2.开始时拖车静止,绳没有拉紧,开始时拖车静止,绳没有拉紧,如图所示,当小车以如图所示,当小车以v v0 0=3m/s=3m/s的速度前的速度前进后,带动拖车运动,且物体不会滑进后,带动拖车运动,且物体不会滑下拖车,求:下拖车,求:(1 1)m m1 1、m m2 2、m m3 3最终的运动速度;最终的运动速度;(2)2)物体在拖车的平板上滑动的距离。物体在拖车的平板上滑动的距离。解析:解析:在水平方在水平方
14、向上,由于整个向上,由于整个系统在运动过程系统在运动过程中不受外力作用,中不受外力作用,故故m1、m2、m3所组成的系统动量守所组成的系统动量守恒,最终三者的速度相同(设为恒,最终三者的速度相同(设为v)则则m1v0m3m2vmmmvm)(32101)/(5.1smv 欲求欲求m m3 3在在m m2 2上的位移,需知上的位移,需知m m1 1与与m m2 2作用后作用后m m2 2的速度,当的速度,当m m1 1与与m m2 2作用时,作用时,m m3 3通过摩擦力与通过摩擦力与m m2 2作用,只有作用,只有m m2 2获得获得速度后速度后m m3 3才与才与m m2 2作用,因此在作用,
15、因此在m m1 1与与m m2 2作用时,可以不考虑作用时,可以不考虑m m3 3的作用,故的作用,故m m1 1和和m m2 2组成的系统动量也守恒。组成的系统动量也守恒。)/(4.2)(21012101smmmvmvvmmvmm3在在m2上移动的距离为上移动的距离为L,以三物,以三物体为系统,由功能关系可得体为系统,由功能关系可得2)(2)(23212213vmmmvmmgLm)(9.0mL 例题例题2、如图在光滑的水平面上,有两个如图在光滑的水平面上,有两个并列放置的木块并列放置的木块A和和B,已知已知mA=500g,mB=300g,有一质量为有一质量为80 g的铜块的铜块C以以25m/
16、s水平初速度开始在水平初速度开始在A表面上滑行,表面上滑行,由于由于C与与A和和B之间有摩擦,铜块之间有摩擦,铜块C最终停最终停在在B上,与上,与B一起以一起以2.5m/s 的速度共同前的速度共同前进进,求求:(1)木块木块A的最后速度的最后速度 (2)C离开离开A时的速度时的速度ABCV0例例3:如图物体如图物体A的质量为的质量为2千克,物体千克,物体B的质量为的质量为3千克,物体千克,物体C的质量为的质量为1千克,千克,物体物体A、B、C放在光滑的水平面上,放在光滑的水平面上,B、C均静止,物体均静止,物体A以速度以速度12m/s水平向右运水平向右运动,与动,与B相碰,碰撞时间极短且碰后相
展开阅读全文