书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型优秀垂径定理教学课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4698191
  • 上传时间:2023-01-02
  • 格式:PPT
  • 页数:22
  • 大小:316.71KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《优秀垂径定理教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    优秀 定理 教学 课件
    资源描述:

    1、人教版九年级上册人教版九年级上册1 问题问题:你知道赵州桥吗你知道赵州桥吗?它的主桥是圆弧形它的主桥是圆弧形,它的跨度它的跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧弧的中点到弦的距离的中点到弦的距离)为为7.2m7.2m,你能求出赵州桥主你能求出赵州桥主桥拱的半径吗?桥拱的半径吗?赵州桥主桥拱的半径是多少?赵州桥主桥拱的半径是多少?2由此你能得到圆的什么特性?由此你能得到圆的什么特性?可以发现:可以发现:圆是轴对称图形。任何圆是轴对称图形。任何一条直径所在直线都是它的对称轴一条直径所在直线都是它的对称轴 不借助任何工具,你能找到圆形不借助任何工具,你能找到圆形

    2、纸片的圆心吗纸片的圆心吗?3 如图如图,AB,AB是是O O的一条弦的一条弦,直径直径CDAB,CDAB,垂足为垂足为E.E.你能发现图中有那些相等的线段你能发现图中有那些相等的线段和弧和弧?为什么为什么?OABCDE线段线段:AE=BE:AE=BE弧弧:AC=BC,AD=BD:AC=BC,AD=BD4已知:在已知:在 O中,中,CD是直径,是直径,AB是弦,是弦,CDAB,垂足为,垂足为E求证:求证:AEBE,ACBC,ADBD证明:连结证明:连结OA、OB,则,则OAOB 垂直于弦垂直于弦AB的的直径直径CD所在所在的直线的直线 既是等腰三角形既是等腰三角形OAB的的对称轴又对称轴又 是是

    3、 O的对称轴的对称轴 当把圆沿着直径当把圆沿着直径CD折叠时,折叠时,CD两侧的两个半圆重合,两侧的两个半圆重合,A点和点和B点重合,点重合,AE和和BE重合,重合,AC、AD分别和分别和BC、BD重合重合 AEBE,ACBC,ADBD叠合法叠合法DOABEC5垂径定理垂径定理垂直于弦垂直于弦的的直径直径平分弦平分弦,并且平分弦所对的两条弧并且平分弦所对的两条弧CDABCDAB CD CD是直径,是直径,AE=BE,AE=BE,AC=BC,AC=BC,AD=BD.AD=BD.OABCDE 老师提示老师提示:垂径定理是圆中一个重要的定理垂径定理是圆中一个重要的定理,三种语言要相互转化三种语言要相

    4、互转化,形成整体形成整体,才能运用自如才能运用自如.6EDCOAB下列图形是否具备垂径定理的条件?下列图形是否具备垂径定理的条件?ECOABDOABc是是不是不是是是不是不是OEDCAB7EDCOABOBCADDOBCAOBAC垂径定理的几个基本图形:垂径定理的几个基本图形:CDCD过圆心过圆心CDABCDAB于于E EAE=BEAC=BCAD=BD81 1、如图,、如图,ABAB是是O O的直径,的直径,CDCD为弦,为弦,CDABCDAB于于E E,则下列结论中则下列结论中不成立不成立的是(的是()A、COE=DOEOE=DOEB、CE=DECE=DEC、OE=AEOE=AED、BD=BC

    5、BD=BC OABECD92 2、如图,、如图,OEABOEAB于于E E,若,若O O的半径为的半径为10cm,OE=6cm,10cm,OE=6cm,则则AB=AB=cmcm。OABE解:解:连接连接OAOA,OEABOEABcmOEOAAE86102222 AB=2AE=16cm AB=2AE=16cm103 3、如图,在、如图,在O中,弦中,弦ABAB的长为的长为8cm8cm,圆,圆心心O到到AB的距离为的距离为3cm3cm,求,求O的半径。的半径。OABE解:解:过点过点O O作作OEABOEAB于于E E,连接,连接OAOAcmOEcmABAE3421cmOEAEAE5342222即

    6、即O的半径为的半径为5 5cm.cm.114 4、如图,、如图,CDCD是是O的直径,弦的直径,弦ABCDABCD于于E E,CE=1CE=1,AB=10AB=10,求直径,求直径CDCD的长。的长。OABECD解:解:连接连接OAOA,CD CD是直径,是直径,OEABOEAB AE=1/2 AB=5 AE=1/2 AB=5设设OA=xOA=x,则,则OE=x-1OE=x-1,由勾股定理得,由勾股定理得x x2 2=5=52 2+(x-1)+(x-1)2 2解得:解得:x=13x=13 OA=13 OA=13 CD=2OA=26 CD=2OA=26即直径即直径CDCD的长为的长为26.26.

    7、12练习练习1:在圆在圆O中,直径中,直径CEAB于于 D,OD=4,弦,弦AC=,求圆求圆O的半径。的半径。10DCEOAB例例1 1:如图,圆:如图,圆O O的弦的弦ABAB8 8 ,DCDC2 2,直径,直径CEABCEAB于于D D,求半径求半径OCOC的长。的长。DCEOAB13反思:反思:在在 O中,若中,若 O的半径的半径r、圆心到弦的距离圆心到弦的距离d、弦长、弦长a中,中,任意知道两个量,可根据任意知道两个量,可根据定理求出第三个量:定理求出第三个量:CDBAO14反思:反思:在在 O中,若中,若 O的半径的半径r、圆心到弦的距离圆心到弦的距离d、弦长、弦长a中,中,任意知道

    8、两个量,可根据任意知道两个量,可根据定理求出第三个量:定理求出第三个量:CDBAO152如图,在如图,在 O中,中,AB、AC为互相垂直且相等的为互相垂直且相等的两条弦,两条弦,ODAB于于D,OEAC于于E,求证四边形,求证四边形ADOE是正方形是正方形DOABCE证明:证明:OEAC ODAB ABAC90 90 90OEAEADODA四边形四边形ADOE为矩形,为矩形,又又AC=AB11 22AEACADAB,AE=AD 四边形四边形ADOE为正方形为正方形.16 3.如图,如图,CD为圆为圆O的直径,弦的直径,弦AB交交CD于于E,CEB=30,DE=9,CE=3,求弦,求弦AB的长。

    9、的长。EDOCAB4.4.如图,如图,ABAB是是O O的弦,的弦,OCA=30OCA=300 0,OB=5cmOB=5cm,OC=8cmOC=8cm,则,则AB=AB=;OABC30308 85 54 4DF17 你能利用垂径定理解决求你能利用垂径定理解决求赵州桥拱半径的问题吗赵州桥拱半径的问题吗?1837.4m7.2mABOCD关于弦的问题,常关于弦的问题,常常需要常需要过圆心作弦过圆心作弦的垂线段的垂线段,这是一,这是一条非常重要的条非常重要的辅助辅助线线。圆心到弦的距离、圆心到弦的距离、半径、弦半径、弦构成构成直角直角三角形三角形,便将问题,便将问题转化为直角三角形转化为直角三角形的问

    10、题。的问题。19ABOCD解:解:如图,用如图,用ABAB表示主桥拱,设表示主桥拱,设ABAB所在的圆的圆心为所在的圆的圆心为O O,半径为,半径为r.r.经过圆心经过圆心O O作弦作弦ABAB的垂线的垂线OCOC垂足为垂足为D D,与,与ABAB交于点交于点C C,则,则D D是是ABAB的中的中点,点,C C是是ABAB的中点,的中点,CDCD就是拱高就是拱高.AB=37.4m AB=37.4m,CD=7.2mCD=7.2m AD=1/2 AB=18.7m AD=1/2 AB=18.7m,OD=OC-CD=r-7.2OD=OC-CD=r-7.2 222ADODOA2222.77.18rr解

    11、得解得r=27.9r=27.9(m m)即即主桥拱半径约为主桥拱半径约为27.9m.27.9m.20垂径定理的应用垂径定理的应用例例2 2如图,一条公路的转变处是一段圆弧如图,一条公路的转变处是一段圆弧(即图中弧即图中弧CD,CD,点点O O是弧是弧CDCD的圆心的圆心),),其中其中CD=600m,ECD=600m,E为弧为弧CDCD上的一点上的一点,且且OECDOECD垂足为垂足为F,EF=90m.F,EF=90m.求这段弯路的半径求这段弯路的半径.n解解:连接连接OC.OC.OCDEF.)90(,mROFRm则设弯路的半径为,CDOE).(3006002121mCDCF得根据勾股定理,即,222OFCFOC.90300222RR.545,R得解这个方程.545m这段弯路的半径约为21 如图,如图,O O的直径为的直径为1010,弦,弦AB=8,PAB=8,P为为ABAB上上的一个动点,那么的一个动点,那么OPOP长的长的取值范围取值范围是是 。?O?P?A?BC4533cmOP5cm3cmOP5cm22

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:优秀垂径定理教学课件.ppt
    链接地址:https://www.163wenku.com/p-4698191.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库