一特征值与特征向量的概念课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一特征值与特征向量的概念课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特征值 特征向量 概念 课件
- 资源描述:
-
1、为阶方阵,为阶方阵,为数,为数,为维非零向量,为维非零向量,A 若若则则称为称为的的特征值特征值,称为称为的的特征向量特征向量()()并不一定唯一;并不一定唯一;,阶方阵阶方阵的特征值,就是使齐次线性方程组的特征值,就是使齐次线性方程组特征向量特征向量 ,特征值问题只针对与方阵;,特征值问题只针对与方阵;0 0EA x 有非零解的有非零解的值,即满足值,即满足的的都是都是方阵方阵的特征值的特征值0EA 0EA 称以称以为未知数的一元次方程为未知数的一元次方程为为的的特征方程特征方程 fEA称以称以为变量的一元次多项式为变量的一元次多项式为为的的特征多项式特征多项式121122(2);nnnaa
2、a12(1);nA 设阶方阵的特征值为设阶方阵的特征值为 ijAa 12,n 则则当是当是的特征值时,的特征值时,的特征多项的特征多项12,n 式可分解为式可分解为 fEA 12n 112121nnnnn 令令0,得得A 121nn 即即12.nA 因为行列式因为行列式它的展开式中,主对角线上元素的乘积它的展开式中,主对角线上元素的乘积 1122nnaaaEA 是其中的一项,由行列式的定义,展开式中的其它项至是其中的一项,由行列式的定义,展开式中的其它项至多含个主对角线上的元素,多含个主对角线上的元素,含的项只能在主对角线上元素的乘积项中含的项只能在主对角线上元素的乘积项中1nn 与与 111
3、22nnnnEAaaa 故有故有比较,有比较,有121122.nnnaaa111212122212nnnnnnaaaaaaaaa 因此,特征多项式中因此,特征多项式中方阵方阵的主对角线上的元素之和称为方阵的主对角线上的元素之和称为方阵的的迹迹.记为记为 .iiitr Aa 阶方阵阶方阵可逆可逆的个特征值全不为零的个特征值全不为零.若数若数为可逆阵的为可逆阵的的特征值,的特征值,则则 为为 的特征值的特征值1 1A 则则 为为 的特征值的特征值k kA则则 为为 的特征值的特征值1A A 则则 为为 的特征值的特征值m mA单位阵单位阵的一个的一个特征值为特征值为、若、若为可逆阵为可逆阵的特征值
4、,则的特征值,则1213A 的一个特征值为()的一个特征值为()、证阶方阵、证阶方阵的满足,则的满足,则的特征值为的特征值为2AA 或或、三阶方阵、三阶方阵的三个特征值为、,则的三个特征值为、,则211020413A ()()311751662B 223EA、求下列方阵的特征值与特征向量、求下列方阵的特征值与特征向量互不相等的特征值所对应的特征向量线性无关。互不相等的特征值所对应的特征向量线性无关。互不相等的特征值对应的各自线性无关的特征互不相等的特征值对应的各自线性无关的特征向量并在一块,所得的向量组仍然向量并在一块,所得的向量组仍然线性无关。线性无关。定理定理若阶矩阵若阶矩阵的任重的任重特
5、征值特征值对应的线性无对应的线性无iti it关的特征关的特征向量向量的个数不超过的个数不超过一、定义一、定义定义定义设设、都是阶矩阵,若有可逆矩阵都是阶矩阵,若有可逆矩阵,使得使得1,PAPB 则称则称是是的的相似矩阵相似矩阵,或者说,或者说矩阵矩阵与与相似相似称为对称为对进进行行相似变换相似变换,1,PAP 对对进行运算进行运算可逆矩阵可逆矩阵称为把称为把变成变成的的相似相似变换矩阵变换矩阵记作记作:二、性质二、性质(1 1)反身性:反身性:(2 2)对称性:对称性:(3 3)传递性:传递性:;,则,则;,则,则;(4 4),则,则 R AR B=(5 5),则,则 AB(6 6),且,且
6、可逆,则可逆,则 11AB定理定理若阶矩阵若阶矩阵与与相似,则相似,则与与有相同的特征有相同的特征多项式,从而多项式,从而与与有相同的特征值有相同的特征值推论推论若阶矩阵若阶矩阵与对角矩阵与对角矩阵1212(,)nndiag 相似,相似,12,n 就是就是的个特征值的个特征值则则1,kKAPP 1()().APP 而对对角阵而对对角阵 有有则则若有可逆若有可逆矩阵矩阵使使(8 8),则,则的多项式的多项式特别特别 AB1,PAP 1122()(),(),()kkkknn 这样可以方便地计算这样可以方便地计算的多项式的多项式().A(7 7),则,则mmAB若能寻得相似变换矩阵若能寻得相似变换矩
7、阵使使1PAP 对阶方阵对阶方阵,称称之为之为把方阵把方阵对角化对角化三、相似对角化三、相似对角化定理的推论说明,定理的推论说明,如果阶矩阵如果阶矩阵与对角矩阵与对角矩阵相相似,似,那么,使得那么,使得1PAP 的矩阵的矩阵又是怎样构成的呢?又是怎样构成的呢?则则的主对角线上的元素就是的主对角线上的元素就是的全部特征值的全部特征值设存在设存在可逆,可逆,1PAP 使得使得 12,nPppp 若若 APP有有 121212,nnnA pppppp 1122,nnppp 于是有于是有(1,2,),iiiApp in 因为因为可逆,可逆,故故0(1,2,),ipin于是于是12,nppp是是的个线性
8、的个线性无无关的特征向量。关的特征向量。反之,反之,即即(1,2,),iiiApp in 设设12(,),nPppp 可逆,且可逆,且则则12,nppp若若有个线性无关的特征向量有个线性无关的特征向量121122(,)(,)nnnAPAp ApApppp1212(,),nnpppP 所以所以1,PAP 即即与对角矩阵与对角矩阵相似相似定理定理阶矩阵阶矩阵能与对角矩阵能与对角矩阵相似相似有阶线性无关的特征向量有阶线性无关的特征向量推论推论如果阶矩阵如果阶矩阵有个不同的特征值,则矩阵有个不同的特征值,则矩阵注意注意中的列向量中的列向量12,nppp的排列顺序要与的排列顺序要与12,n 的顺序一致的
9、顺序一致(1 1)可相似对角化可相似对角化(2 2)是是ip()0AE x 的基础解系中的解的基础解系中的解向量,向量,因因ip的取法不是唯一的,的取法不是唯一的,故故因此因此也是也是不唯一的不唯一的(3 3)所以如果不计所以如果不计的排列顺序,的排列顺序,0AE 的根只有个(重根按重数计算)的根只有个(重根按重数计算)又又 是唯一的是唯一的则则i 推论推论若阶矩阵若阶矩阵可相似对角化可相似对角化的任重的任重特征值特征值对应个线性无关的特征对应个线性无关的特征向量向量iti it例题:为对角矩阵。化矩阵AA,313043241)1(为对角矩阵。化矩阵AA,103000000)2(。,证明阶矩阵
展开阅读全文