MRI基本原理66张课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《MRI基本原理66张课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- MRI 基本原理 66 课件
- 资源描述:
-
1、磁共振成像的物质基础一、原子的结构原子是由原子核和位于其周围轨道中的电子构成,电子带有负电荷,原子核由中子和质子构成,中子不带电荷,质子带有正电荷。二、自旋和核磁的概念任何磁性原子核都具有以一定频率绕自身轴进行高速旋转的特性,该特性称为自旋。由于原子核带有正电荷,磁性原子核的自旋就形成电流环路,产生具有一定大小和方向的磁化矢量。我们把这种由带正电荷原子核自旋产生的磁场称为核磁。三、磁性和非磁性原子核并非所有原子核都有自旋,如果原子核内的质子和中子数均为偶数,则该种原子核无自旋和核磁,被称之为非磁性原子核。反之,有自旋和核磁的原子核称为磁性原子核。磁性原子核需要符合以下条件:(1)中子和质子均为
2、奇数;(2)中子为奇数,质子为偶数;(3)中子为偶数,质子为奇数。四、用于人体磁共振成像的原子四、用于人体磁共振成像的原子通常所指的通常所指的MRI为为氢质子的氢质子的MR图像图像。原因有:原因有:1、1H的磁化率很高;的磁化率很高;2、1H占人体原子的绝大多数。占人体原子的绝大多数。这是这是MRI显示解剖结构和病变的基础。显示解剖结构和病变的基础。五、人体组织MRI信号的主要来源需要指出:并非所有质子都产生MRI信号,常规MRI信号主要来源于水分子的质子(简称水质子),部分组织的信号也可来源于脂肪中的质子(简称脂质子)。人体内的水分子可以分为自由水和结合水两种。前者指蛋白质大分子周围水化层中
3、的水分子,这些水分子黏附于蛋白质大分子的部分基团上,与蛋白质大分子不同程度的结合在一起,其运动受限。后者是指未与蛋白质结合,能自由活动的水分子。进入主磁场前后人体内质子核磁状态的改变一、进入主磁场前人体内质子的核磁状态 人体所含质子不计其数,每个质子自旋均能产生一个小磁场,由于这种小磁场的排列处于杂乱无章的状态,使每个质子产生的磁化矢量相互抵消,因此人体在自然状态下并无磁性,即没有宏观磁化矢量的产生。二、进入主磁场后人体内质子的核磁状态 当人体位于主磁场中时,体内质子产生的小磁场呈有规律排列,主要有两种排列方式:一是与主磁场方向平行,另一种是与主磁场方向相反。从量子物理学的角度而言,二者代表质
4、子的能量差别。与主磁场平行同向的质子处于低能级,其磁化矢量方向与主磁场一致;平行反向的质子处于高能级,其磁化矢量与主磁场相反。由于低能级质子略多,使人体产生一个与主磁场方向一致的宏观纵向磁化矢量。把人体放进大磁场接收线圈接收线圈但接收但接收线圈能检测到线圈能检测到旋转的横向磁化矢量。即此时主磁场内氢旋转的横向磁化矢量。即此时主磁场内氢质子仍处于低能状态。质子仍处于低能状态。纵向弛豫纵向弛豫 也称为也称为T1弛豫弛豫,是指,是指90度脉冲关闭后,在主磁场度脉冲关闭后,在主磁场的作用下,的作用下,纵向磁化矢量开始恢复,直至恢复到纵向磁化矢量开始恢复,直至恢复到平衡状态的过程,纵向磁化矢量恢复到原能
5、量平衡状态的过程,纵向磁化矢量恢复到原能量2/3时所需时间即时所需时间即T1弛豫时间弛豫时间。在纵向弛豫过程中高。在纵向弛豫过程中高能态的质子将其能量扩散到周围环境,所以又称能态的质子将其能量扩散到周围环境,所以又称为为自旋晶格弛豫。自旋晶格弛豫。90180回波回波回波回波90180TETR 如何区分如何区分T1WI、T2WI如何区分如何区分T1WI、T2WI 脑功能成像脑功能成像 MRI电影电影 MR频谱分析频谱分析 介入性介入性MRI。MRI扩散(弥散)成像 扩散加权像上扩散值高的区域表现为低信号,而扩散值低的区域表现为高信号。超早期脑缺血区域细胞毒性水肿,水分子扩散下降约50%,表现为高
6、信号。扩散加权成像能够在缺血发作后2小时即显示缺血病灶。扩散加权成像的临床应用 DWI在临床上主要用于超急性期脑梗死的诊断和鉴别诊断。在DWI上,超急性和急性梗死脑组织表现为高信号,其显示梗死区明显早于常规T1和T2加权像。由于其他脑组织病变(如多发硬化的活动病灶、部分肿瘤、血肿、脓肿等)也可表现为DWI高信号,需要注意进行鉴别诊断。此外,DWI也可能用于其他脏器和组织(如肝脏、肾脏、乳腺、脊髓、骨髓等),提供病变的诊断和鉴别诊断信息,但此方面的经验还不多,有待于进一步研究。动态对比增强磁共振脑血流灌注成像(dynamic contrast-enhanced MR perfusion-weig
7、hted imaging,简称PWI)急性脑缺血发作早期,局部脑血流灌注有下降,PWI所显示的脑组织内血流灌注明显异常区域面积常大于DWI上的异常高信号区域。DWI上的异常高信号区域多位于病灶中心,最终发展为梗塞灶,而扩大的部分既可以演变为梗塞灶的一部分,也可以逐渐缩小而且信号回复正常。利用人体内的水作为天然对比剂清晰显示含水器官的解剖和病变。水成像技术的临床应用 MRCP是目前临床上最常用的水成像技术,主要适应证包括胆道结石、胆道肿瘤、胆道炎症、胰腺肿瘤、慢性胰腺炎、胆胰管变异或畸形等。MRU主要适应证有:尿路结石、肾盂肾盏肿瘤、输尿管肿瘤、膀胱肿瘤、其它原因的尿路梗阻、泌尿系变异或畸形等。
展开阅读全文