Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《Fractals-and-Chaos-Simplified-for-the-Life-S分形与混沌简化生活的课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Fractals and Chaos Simplified for the Life 混沌 简化 生活 课件
- 资源描述:
-
1、 Larry Liebovitch,Ph.D.Florida Atlantic University 2019Data 1RANDOMrandomx(n)=RNDCHAOSDeterministicx(n+1)=3.95 x(n)1-x(n)Data 2etc.Data 1RANDOMrandomx(n)=RNDData 2CHAOSdeterministicx(n+1)=3.95 x(n)1-x(n)x(n+1)x(n)DefinitionCHAOSDeterministicpredict that valuethese valuesCHAOSSmall Number of Variable
2、sx(n+1)=f(x(n),x(n-1),x(n-2)DefinitionDefinitionCHAOSComplex OutputPropertiesCHAOSPhase Space is Low Dimensionalphase spaced ,randomd=1,chaosPropertiesCHAOSSensitivity to Initial Conditionsnearly identicalinitial valuesvery differentfinal valuesPropertiesCHAOSBifurcationssmall change in a parametero
3、ne patternanother patternTime SeriesX(t)Y(t)Z(t)embeddingPhase SpaceX(t)Z(t)phase space setY(t)Attractors in Phase SpaceLogistic EquationX(n+1)X(n)X(n+1)=3.95 X(n)1-X(n)Attractors in Phase SpaceLorenz EquationsX(t)Z(t)Y(t)X(n+1)X(n)Logistic Equationphase spacetime seriesdthe fractal dimension of the
4、 attractord the fractal dimension of the attractord=2.03,therefore,the equation of the time series that produced this attractor depends on 3 independent variables.X(t)Z(t)Y(t)X(n+1)nData 1time seriesphase spaced Since ,the time series was producedby a randommechanism.d Data 2time seriesphase spaced=
5、1 Since d=1,the time series was produced by a deterministicmechanism.Constructed by direct measurement:Phase SpaceEach point in the phase space set has coordinatesX(t),Y(t),Z(t)Measure X(t),Y(t),Z(t)Z(t)X(t)Y(t)Constructed from one variablePhase SpaceTakens TheoremTakens 1981 In Dynamical Systems an
6、d Turbulence Ed.Rand&Young,Springer-Verlag,pp.366-381X(t+t)X(t+2 t)X(t)Each point in thephase space sethas coordinatesX(t),X(t+t),X(t+2 t)velocity(cm/sec)Position and Velocity of the Surface of a Hair Cell in the Inner EarTeich et al.1989 Acta Otolaryngol(Stockh),Suppl.467;265-27910-1-10-1-10-43 x 1
7、0-5displacement(cm)stimulus=171 Hzvelocity(cm/sec)Position and Velocity of the Surface of a Hair Cell in the Inner EarTeich et al.1989 Acta Otolaryngol(Stockh),Suppl.467;265-2795 x 10-6displacement(cm)stimulus=610 Hz-3 x 10-23 x 10-2-2 x 10-5Data 1RANDOMx(n)=RNDfractal demension of the phase space s
8、etfractal dimension of phase space setembedding dimension=number of values of the data taken at a time to produce the phase space setData 2CHAOSdeterministicx(n+1)=3.95 x(n)1-x(n)fractal dimension of phase space setfractal demension of the phase space set=1embedding dimension=number of values of the
9、 data taken at a time to produce the phase space setmicroelectrodechick heart cellcurrent sourcevoltmeterChick Heart CellsvGlass,Guevara,Blair&Shrier.1984 Phys.Rev.A29:1348-1357Spontaneous Beating,No External StlimulationChick Heart CellsvoltagetimePeriodically Stimulated2 stimulations-1 beatChick H
10、eart Cells2:1Chick Heart Cells1:1Periodically Stimulated1 stimulation-1 beatChick Heart Cells2:3Periodically Stimulated2 stimulations-3 beatsperiodic stimulation-chaotic responseThe Pattern of Beatingof Chick Heart CellsGlass,Guevara,Blair&Shrier.1984 Phys.Rev.A29:1348-1357=phase of the beat with re
11、spect to the stimulusThe Pattern of Beating of Chick Heart Cells continuedphase vs.previous phase0.500.51.01.000.51.0i+1experimentitheory(circle map)The Pattern of Beatingof Chick Heart CellsGlass,Guevara,Belair&Shrier.1984 Phys.Rev.A29:1348-1357Since the phase space set is 1-dimensional,the timing
12、between the beats of thesecells can be described by a deterministic relationship.XtimedXtimedx(t)x(t+t)x(t+2 t)Chanced(phase space set)Determinismd(phase space set)=lowDatax(t)t?C O L DModelHOT(Rayleigh,Saltzman)EquationsEquationsEquationsPhase SpaceZXYX 0cylinder of air rotating counter-clockwisecy
13、linder of air rotating clockwiseIXtop(t)-Xbottom(t)I e t =Liapunov ExponentX(t)X=1.00001Initial Condition:differentsameX(t)X=1.00X(n+1)=f X(n)Accuracy of values computed for X(n):1.736 2.345 3.2545.455 4.876 4.2343.212X(n+1)=f X(n)Accuracy of values computed for X(n):3.455 3.45?3.4?3.?Clockwork Univ
14、ersedetermimistic non-chaoticCancomputeall futureX(t),Y(t),Z(t).EquationsChaotic Universedetermimistic chaoticsensitivityto initial conditionsCan notcomputeall futureX(t),Y(t),Z(t).EquationsTrajectories from outside:pulled TOWARDS itwhy its called an attractorstarting away:Trajectories on the attrac
15、tor:pushed APART from each othersensitivity to initial conditionsstarting on:phase space setnot strangestrangetime seriesnot chaoticchaoticX(t)tX(t)tIf the errors at each integration step are small,there is an EXACT trajectory which lies within a small distance of the errorfull trajectory that we ca
16、lculatedThere is an INFINITE number of trajectories on the attractor.When we go off the attractor,we are sucked back down exponentially fast.Were on an exact trajectory,just not on the one we thought we were on.4.We are on a“real”trajectory.3.Pulled backtowards the attractor.2.Error pushesus offthe
17、attractor.1.We start here.Trajectorythat we actuallycompute.Trajectory that we are trying to compute.TUESDAY10 lArT10 lWEDNESDAYArTA=3.22X(n)nX(n+1)=A X(n)1-X(n)A=3.42X(n)nX(n+1)=A X(n)1-X(n)A=3.62X(n)nBifurcationl Start with one value of A.l Start with x(1)=0.5.l Use the equation to compute x(2)fro
18、m x(1).l Use the equation to compute x(3)from x(2)and so on.up to x(300).x(n+1)=A x(n)1-x(n)l Ignore x(1)to x(50),these are the transient values off of the attractor.l Plot x(51)to x(300)on the Y-axis over the value of A on the X-axis.l Change the value of A,and repeat the procedure again.x(n+1)=A x
19、(n)1-x(n)Sudden changes of the pattern indicate bifurcations()x(n)x(n)The energy in glucose is transfered to ATP.ATP is used as an energy source to drive biochemical reactions.Glycolysis+-periodicTheoryMarkus and Hess 1985 Arch.Biol.Med.Exp.18:261-271Glycolysistimesugar inputATP outputchaotictimetim
20、etimeExperimentsHess and Markus 1987 Trends.Biomed.Sci.12:45-48cell-free extracts from bakers yeastGlycolysisATP measured by fluorescence glucose inputtimeExperimentsHess and Markus 1987 Trends.Biomed.Sci.12:45-48PeriodicfluorescenceGlycolysisVinGlycolysisExperimentsHess and Markus 1987 Trends.Biome
21、d.Sci.12:45-48Chaotic20 minGlycolysisMarkus et al.1985.Biophys.Chem 22:95-105Bifurcation DiagramchaostheoryexperimentGlycolysisMarkus et al.1985.Biophys.Chem 22:95-105ADP measured at the same phase each time of the input sugar flow cycle(ATP is related to ADP)period of the input sugar flow cycle#=pe
展开阅读全文
链接地址:https://www.163wenku.com/p-4688222.html