D7-4平面与空间直线课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《D7-4平面与空间直线课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- D7 平面 空间 直线 课件
- 资源描述:
-
1、第四节一、平面的点法式方程平面的点法式方程二、平面的一般方程二、平面的一般方程三、两平面的夹角三、两平面的夹角机动 目录 上页 下页 返回 结束 平面及空间直线 第七七章 zyxo0Mn一、平面的点法式方程一、平面的点法式方程),(0000zyxM设一平面通过已知点且垂直于非零向0)()()(000zzCyyBxxAM称式为平面的点法式方程点法式方程,求该平面的方程.,),(zyxM任取点),(000zzyyxx法向量.量,),(CBAn nMM000nMMMM0则有 故的为平面称n机动 目录 上页 下页 返回 结束 kji例例1.1.求过三点,1M又)1,9,14(0)4()1(9)2(14
2、zyx015914zyx即1M2M3M解解:取该平面 的法向量为),2,3,1(),4,1,2(21MM)3,2,0(3M的平面 的方程.利用点法式得平面 的方程346231nn3121MMMM机动 目录 上页 下页 返回 结束 此平面的三点式方程三点式方程也可写成 0132643412zyx0131313121212111zzyyxxzzyyxxzzyyxx一般情况一般情况:过三点)3,2,1(),(kzyxMkkkk的平面方程为说明说明:机动 目录 上页 下页 返回 结束 特别特别,当平面与三坐标轴的交点分别为此式称为平面的截距式方程截距式方程.),0,0(,)0,0(,)0,0,(cRb
3、QaP1czbyax时,)0,(cbabcax)(cay)(0bazabcbzaacybcx平面方程为 PozyxRQ分析:利用三点式 按第一行展开得 即0ax yzab0a0c机动 目录 上页 下页 返回 结束 二、平面的一般方程二、平面的一般方程设有三元一次方程 以上两式相减,得平面的点法式方程此方程称为平面的一般平面的一般0DzCyBxA任取一组满足上述方程的数,000zyx则0)()()(000zzCyyBxxA0000DzCyBxA显然方程与此点法式方程等价,)0(222CBA),(CBAn 的平面,因此方程的图形是法向量为 方程方程.机动 目录 上页 下页 返回 结束 特殊情形特殊
4、情形 当 D=0 时,A x+B y+C z=0 表示 通过原点通过原点的平面;当 A=0 时,B y+C z+D=0 的法向量平面平行于 x 轴;A x+C z+D=0 表示 A x+B y+D=0 表示 C z+D=0 表示 A x+D=0 表示 B y+D=0 表示0DCzByAx)0(222CBA平行于 y 轴的平面;平行于 z 轴的平面;平行于 xoy 面 的平面;平行于 yoz 面 的平面;平行于 zox 面 的平面.,),0(iCBn机动 目录 上页 下页 返回 结束 例例2.求通过 x 轴和点(4,3,1)的平面方程.例例3.用平面的一般式方程导出平面的截距式方程.解解:因平面
5、通过 x 轴,0 DA故设所求平面方程为0zCyB代入已知点)1,3,4(得BC3化简,得所求平面方程03 zy(P327 例4,自己练习)机动 目录 上页 下页 返回 结束 三、两平面的夹角三、两平面的夹角设平面1的法向量为 平面2的法向量为则两平面夹角 的余弦为 cos即212121CCBBAA222222CBA212121CBA两平面法向量的夹角(常为锐角)称为两平面的夹角.122n1n),(1111CBAn),(2222CBAn 2121cosnnnn 机动 目录 上页 下页 返回 结束 2特别有下列结论:特别有下列结论:21)1(0212121CCBBAA21/)2(212121CC
6、BBAA),(:),(:2222211111CBAnCBAn1122121cosnnnn 21nn 21/nn2n1n2n1n机动 目录 上页 下页 返回 结束 因此有例例4.一平面通过两点垂直于平面:x+y+z=0,求其方程.解解:设所求平面的法向量为,020CBA即CA2的法向量,0CBACCAB)()0(0)1()1()1(2CzCyCxC约去C,得0)1()1()1(2zyx即02zyx0)1()1()1(zCyBxA)1,1,1(1M,)1,1,0(2M和则所求平面故,),(CBAn方程为 n21MMn且机动 目录 上页 下页 返回 结束 外一点,求),(0000zyxP0DzCyB
展开阅读全文