书签 分享 收藏 举报 版权申诉 / 20
上传文档赚钱

类型313概率的基本性质课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4687480
  • 上传时间:2023-01-01
  • 格式:PPT
  • 页数:20
  • 大小:897.37KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《313概率的基本性质课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    313 概率 基本 性质 课件
    资源描述:

    1、 我们知道,一个事件可能包含试验的多个结果。我们知道,一个事件可能包含试验的多个结果。比如在掷骰子这个试验中:比如在掷骰子这个试验中:“出现的点数小于或出现的点数小于或等于等于3”这个事件中包含了哪些结果呢?这个事件中包含了哪些结果呢?“出现的点数为出现的点数为1”“出现的点数为出现的点数为2”“出现的点数为出现的点数为3”这三个结果这三个结果这样我们把每一个结果可看作元素,而每一个事件可这样我们把每一个结果可看作元素,而每一个事件可看作一个集合。看作一个集合。因此。事件之间的关系及运算几乎等价于集合之间的因此。事件之间的关系及运算几乎等价于集合之间的关系与运算。关系与运算。思考思考:在掷骰子

    2、试验中在掷骰子试验中,可以定义许多事件,例如可以定义许多事件,例如:C C1 1=出现出现1 1点点;C C2 2=出现出现2 2点点;C C3 3=出现出现3 3点点;C C4 4=出现出现4 4点点;C C5 5=出现出现5 5点点;C C6 6=出现出现6 6点点;D D1 1=出现的点数不大于出现的点数不大于1;1;D D2 2=出现的点数大于出现的点数大于3;3;D D3 3=出现的点数小于出现的点数小于5;5;E=E=出现的点数小于出现的点数小于7;7;F=F=出现的点数大于出现的点数大于6;6;G=G=出现的点数为偶数出现的点数为偶数;H=H=出现的点数为奇数出现的点数为奇数;类

    3、比集合与集合的关系、运算,你能发现事类比集合与集合的关系、运算,你能发现事件之间的关系与运算吗?件之间的关系与运算吗?(一)、事件的关系与运算一)、事件的关系与运算对于事件对于事件A A与事件与事件B B,如果事件,如果事件A A发生,则事件发生,则事件B B一一定发生,这时称事件定发生,这时称事件B B包含事件包含事件A A(或称事件(或称事件A A包含包含于事件于事件B B).1.1.包含关系包含关系 AB注注:(1 1)图形表示:)图形表示:(2 2)不可能事件记作)不可能事件记作,任何事件都包含任何事件都包含不可能事件不可能事件。如。如:C C1 1 记作记作:B:B A A(或(或A

    4、 A B B)D D3 3=出现的点数小于出现的点数小于5;5;例例:C C1 1=出现出现1 1点点;如如:D:D3 3 C C1 1 或或 C C1 1 D D3 3一般地,若一般地,若B B A A,且,且A A B B ,那么称事件,那么称事件A A与事与事件件B B相等。相等。(2 2)两个相等的事件总是同时发生或同时不)两个相等的事件总是同时发生或同时不发生。发生。B(A)2.2.相等事件相等事件记作记作:A=B.:A=B.注:注:(1 1)图形表示:)图形表示:例例:C:C1 1=出现出现1 1点点;D D1 1=出现的点数不大于出现的点数不大于1;1;如如:C:C1 1=D=D

    5、1 13.3.并(和)事件并(和)事件若某事件发生当且仅当事件若某事件发生当且仅当事件A A或事件或事件B B发生,则称发生,则称此事件为事件此事件为事件A A与事件与事件B B的并事件(或和事件)的并事件(或和事件).记作:记作:A A B B(或(或A+BA+B)AB图形表示:图形表示:例例:C:C1 1=出现出现1 1点点;C C5 5=出现出现5 5点点;J=J=出现出现1 1点或点或5 5点点.如如:C:C1 1 C C5 5=J=J4.4.交(积)事件交(积)事件若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生且事件发生且事件B B发发生,则称此事件为事件生,则称此事件为

    6、事件A A与事件与事件B B的交事件的交事件(或积事件)(或积事件).记作:记作:A A B B(或(或ABAB)如:如:C C3 3 D D3 3=C=C4 4AB图形表示:图形表示:例例:D:D2 2=出现的点数大于出现的点数大于3;3;D D3 3=出现的点数小于出现的点数小于5;5;C C4 4=出现出现4 4点点;5.5.互斥事件互斥事件若若A A B B为不可能事件(为不可能事件(A A B B=)那么称事件)那么称事件A A与事件与事件B B互斥互斥.(1 1)事件)事件A A与事件与事件B B在任何一次试验中不在任何一次试验中不 会同时发生。会同时发生。(2 2)两事件同时发生

    7、的概率为)两事件同时发生的概率为0 0。图形表示:图形表示:AB例例:C:C1 1=出现出现1 1点点;C C3 3=出现出现3 3点点;如如:C:C1 1 C C3 3=注:事件注:事件A A与事件与事件B B互斥时互斥时(2 2)对立事件一定是)对立事件一定是互斥事件,但互斥互斥事件,但互斥 事件不一定是对立事件。事件不一定是对立事件。6.6.对立事件对立事件若若A A B B为不可能事件,为不可能事件,A A B B为必然事件,那么事为必然事件,那么事件件A A与事件与事件B B互为对立事件。互为对立事件。注:注:(1 1)事件事件A A与事件与事件B B在任何一次试验中有且在任何一次试

    8、验中有且 仅有一个发生。仅有一个发生。例例:G=:G=出现的点数为偶数出现的点数为偶数;H=H=出现的点数为奇数出现的点数为奇数;如如:事件事件G G与事件与事件H H互为对立事件互为对立事件探索:探索:一个射手进行一次射击一个射手进行一次射击,试判断下列事件试判断下列事件哪些是互斥事件哪些是互斥事件?哪些是对立事件哪些是对立事件?事件事件A A:命中环数大于:命中环数大于7 7环;环;事件事件C C:命中环数小于:命中环数小于6 6环;环;事件事件D D:命中环数为:命中环数为6 6、7 7、8 8、9 9、1010环环.事件事件B B:命中环数为:命中环数为1010环;环;解:解:A与与C

    9、互斥(不可能同时发生),互斥(不可能同时发生),B与与C互斥,互斥,C与与D互斥,互斥,C与与D是对立事件(至少一个发生)是对立事件(至少一个发生)(二二)、概率的几个基本性质、概率的几个基本性质1.1.概率概率P(A)的取值范围的取值范围(1)0P(A)1.(2 2)必然事件的概率是)必然事件的概率是1.1.(3 3)不可能事件的概率是)不可能事件的概率是0.0.(4 4)若)若A B,A B,则则 p(A)p(A)P(B)P(B)(B)(A)B)(Afffnnn思考:思考:掷一枚骰子掷一枚骰子,事件事件C C1 1=出现出现1 1点点,事件,事件 C C3 3=出现出现3 3点点 则事件则

    10、事件C C1 1 C C3 3 发生的频率发生的频率 与事件与事件C C1 1和事件和事件C C3 3发生的频率之间有什发生的频率之间有什 么关系么关系?结论:结论:当事件当事件A A与事件与事件B B互斥时互斥时2.2.概率的加法公式:概率的加法公式:如果如果事件事件A A与事件与事件B B互斥互斥,则,则P(A A B B)=P(A A)+)+P(B B)若若事件事件A A,B B为对立事件为对立事件,则则P(B B)=1=1P(A A)3.3.对立事件的概率公式对立事件的概率公式(1 1)取到红色牌(取到红色牌(事件事件C C)的概率是多少?)的概率是多少?(2 2)取到黑色牌(取到黑色

    11、牌(事件事件D D)的概率是多少?)的概率是多少?例例 如果从不包括大小王的如果从不包括大小王的5252张扑克牌中随张扑克牌中随机抽取一张,那么取到红心(机抽取一张,那么取到红心(事件事件A A)的概率)的概率是是 ,取到方片(,取到方片(事件事件B B)的概率是)的概率是 。问。问:4 41 14 41 1解解(1)因为)因为C=AB,且,且A与与B不会同时发生,所以不会同时发生,所以A与与B是互是互 斥事件。根据概率的加法公式,得:斥事件。根据概率的加法公式,得:P(C)=P(A)+P(B)=1/2(2)C与与D也是互斥事件,又由于也是互斥事件,又由于 CD为必然事件,所以为必然事件,所以

    12、 C与与D互为对立事件,所以互为对立事件,所以 P(D)=1P(C)=1/2年降水量(单年降水量(单位位:mm)100,150)150,200)200,250)250,300)概率概率0.120.250.160.14135125121251253241)D(P,61)C(P,41)B(P。、4161411.1.某射手射击一次射中某射手射击一次射中1010环、环、9 9环、环、8 8环、环、7 7环的概率分别是环的概率分别是0.240.24、0.280.28、0.190.19、0.160.16,计算这名射手射击一次,计算这名射手射击一次(1 1)射中)射中1010环或环或9 9环的概率;环的概率

    13、;(2 2)至少射中)至少射中7 7环的概率环的概率.(3 3)射中环数不足)射中环数不足8 8环的概率环的概率212.2.甲、乙两人下棋,和棋的概率为甲、乙两人下棋,和棋的概率为 ,乙胜的概率为,乙胜的概率为 ,求:,求:(1 1)甲胜的概率;)甲胜的概率;(2 2)甲不输的概率。)甲不输的概率。311 1、事件的关系与运算,区分、事件的关系与运算,区分互斥事件与对立事件互斥事件与对立事件2 2、概率的基本性质、概率的基本性质 (1 1)对于任一事件)对于任一事件A,A,有有0P(A)10P(A)1 (2 2)如果事件)如果事件A A与事件与事件B B互斥,则互斥,则P P(A A B B)=P P(A A)+)+P P(B B)(3 3)若事件)若事件A A,B B为对立事件为对立事件,则则P P(B B)=1=1P P(A A)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:313概率的基本性质课件.ppt
    链接地址:https://www.163wenku.com/p-4687480.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库