概率的基本性质2课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率的基本性质2课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率 基本 性质 课件
- 资源描述:
-
1、.教学情境设计教学情境设计(1)集合有相等、包含关系集合有相等、包含关系,如如1,3=3,1,2,4 2,3,4,5等;等;(2)在掷骰子试验中,可以定义许多事件如:在掷骰子试验中,可以定义许多事件如:C1=出现出现1点点,C2=出现出现2点点,C3=出现出现1点点或或2点点,C4=出现的点数为偶数出现的点数为偶数观察上例,类比集合与集合的关系、运算,你观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?能发现事件的关系与运算吗?.)BAAB(或一、事件的关系和运算:一、事件的关系和运算:B BA A如图:如图:例例.事件事件C C1 1=出现出现1 1点点 发生,则事件发生,则
2、事件 H=H=出现的出现的点数为奇数点数为奇数 也一定会发生,所以也一定会发生,所以1HC注:注:不可能事件记作不可能事件记作 ,任何事件都包括不可能事件。,任何事件都包括不可能事件。(1 1)包含包含关系关系一般地,对于事件一般地,对于事件A A与事件与事件B B,如果事件,如果事件A A发生,则发生,则事件事件B B一定发生,这时称一定发生,这时称事件事件B B包含事件包含事件A A(或称(或称事事件件A A包含于事件包含于事件B B),记作记作.(2 2)相等相等关系关系B B A A如图:如图:例例.事件事件C C1 1=出现出现1 1点点 发生,则事件发生,则事件D D1 1=出现的
3、点数不出现的点数不大于大于11就一定会发生,反过来也一样,所以就一定会发生,反过来也一样,所以C C1 1=D=D1 1。事件的关系和运算:事件的关系和运算:BAAB且一般地,对事件一般地,对事件A A与事件与事件B B,若,若 ,那么称那么称事件事件A A与事件与事件B B相等相等,记作,记作A=B A=B。.(3 3)并并事件(事件(和和事件)事件)若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生或事件发生或事件B B发生,则发生,则称此事件为事件称此事件为事件A A和事件和事件B B的的并事件并事件(或(或和事件和事件),),记作记作 。ABAB()或或B B A A如图:如图
4、:AB例例.若事件若事件K=K=出现出现1 1点或点或5 5点点 发生,则事件发生,则事件C C1 1=出现出现1 1点点 与事件与事件C C5 5=出现出现 5 5 点点 中至少有一个会中至少有一个会发生,则发生,则K .事件的关系和运算:事件的关系和运算:.(4 4)交交事件(事件(积积事件)事件)若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生且事件发生且事件B B发生,发生,则称此事件为事件则称此事件为事件A A和事件和事件B B的的交事件交事件(或(或积事积事件件),记作),记作 。ABAB()或或B B A A如图:如图:BA事件的关系和运算:事件的关系和运算:15MCC
5、例例.若事件若事件 M=M=出现出现1 1点且点且5 5点点 发生,则事件发生,则事件C C1 1 =出现出现1 1点点 与事件与事件C C5 5=出现出现5 5点点 同时发生,同时发生,则则 .(5 5)互斥互斥事件事件若若 为不可能事件(为不可能事件(),那么称事件),那么称事件A A与事件与事件B B互斥互斥,其含义是:,其含义是:事件事件A A与事件与事件B B在任何一次试在任何一次试验中都不会同时发生验中都不会同时发生。ABAB AB如图:如图:例例.因为事件因为事件C C1 1=出现出现1 1点点 与事件与事件C C2 2=出现出现2 2点点 不可能不可能同时发生,故这两个事件互斥
6、。同时发生,故这两个事件互斥。事件的关系和运算:事件的关系和运算:.(6 6)互为)互为对立对立事件事件若若 为不可能事件,为不可能事件,为必然事件,那么称事为必然事件,那么称事件件A A与事件与事件B B互为对立事件互为对立事件,其含义是:,其含义是:事件事件A A与事件与事件B B在在任何一次试验中有且仅有一个发生任何一次试验中有且仅有一个发生。ABABA AB B如图:如图:例例.事件事件G=G=出现的点数为偶数出现的点数为偶数 与事件与事件H=H=出现的点出现的点数为奇数数为奇数 即为互为对立事件。即为互为对立事件。事件的关系和运算:事件的关系和运算:.互斥事件与对立事件的区别与联系互
7、斥事件与对立事件的区别与联系:互斥事件是指事件互斥事件是指事件A A与事件与事件B B在一次试验中在一次试验中不会同时发生,其具体包括三种不同的情形:不会同时发生,其具体包括三种不同的情形:(1 1)事件)事件A A发生且事件发生且事件B B不发生;(不发生;(2 2)事件)事件A A不不发生且事件发生且事件B B发生;(发生;(3 3)事件)事件A A与事件与事件B B同时不同时不发生发生.对立事件是指事件对立事件是指事件A A与事件与事件B B有且仅有一个有且仅有一个发生,其包括两种情形;(发生,其包括两种情形;(1 1)事件)事件A A发生且发生且B B不不发生;(发生;(2 2)事件)
8、事件B B发生事件发生事件A A不发生不发生.对立事件是互斥事件的特殊情形。对立事件是互斥事件的特殊情形。.例题分析:例题分析:例例1 1 一个射手进行一次射击一个射手进行一次射击,试判断下列事件哪些是试判断下列事件哪些是互斥事件互斥事件?哪些是对立事件哪些是对立事件?事件事件A A:命中环数大于:命中环数大于7 7环;环;事件事件B B:命中环数为:命中环数为1010环;环;事件事件C C:命中环数小于:命中环数小于6 6环;环;事件事件D D:命中环数为:命中环数为6 6、7 7、8 8、9 9、1010环环.分析:要判断所给事件是对立还是互斥,首先分析:要判断所给事件是对立还是互斥,首先
9、将两个概念的联系与区别弄清楚,互斥事件是指不可将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。的基础上,两个事件中一个不发生,另一个必发生。解解:互斥事件有互斥事件有:A和和C、B和和C、C和和D.对立事件有对立事件有:C和和D.l练习练习:从从1,2,9中任取两个数中任取两个数,其中其中(1)恰有一个是偶数和恰有一个是奇数;)恰有一个是偶数和恰有一个是奇数;(2)至少有一个是奇数和两个数都是奇数;)至少有一个是奇数和两个数都是奇数;(3)至少有一个奇数和两个
展开阅读全文