书签 分享 收藏 举报 版权申诉 / 38
上传文档赚钱

类型反函数教学课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4680179
  • 上传时间:2022-12-31
  • 格式:PPT
  • 页数:38
  • 大小:334.20KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《反函数教学课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    反函数 教学 课件
    资源描述:

    1、学习要求:学习要求:1.掌握反函数的概念掌握反函数的概念 2.会求一些简单函数的反函数会求一些简单函数的反函数 设设A=R,B=R,映射映射 62:xyxfABx?62 xyyx=?f函数函数)(62Rxxy 中,中,x是自变量,是自变量,y是是x的函数,的函数,从函数从函数62 xy中解出中解出x,得到得到)(32Ryyx 这样,对于这样,对于y在在R中任何一个值,通过式子中任何一个值,通过式子,32 yxx在在R中都有唯一的值和它对应。中都有唯一的值和它对应。这时这时 y 为自变量,为自变量,x 作为作为 y 的函数的函数这样的函数称为原函数的这样的函数称为原函数的反函数反函数请总结一下反

    2、函数的定义请总结一下反函数的定义反函数的定义:反函数的定义:函数函数y=f(x)(xA)中,设它的值域为中,设它的值域为 C。我们根据这个函数中我们根据这个函数中x,y的关系,的关系,如果对于如果对于y在在C中的任何一个值,通过中的任何一个值,通过x=(y),x在在A中都有唯一的值和它对应,中都有唯一的值和它对应,那么那么,x=(y)就表示就表示y是自变量,是自变量,x是自是自变量变量 y 的函数。这样的函数的函数。这样的函数 x=(y)(y C)叫做函数叫做函数y=f(x)(xA)的反函数的反函数.用用 y 把把 x 表示出来,得到表示出来,得到 x=(y)。(1)反函数是不是函数;)反函数

    3、是不是函数;(2)反函数有没有三要素?)反函数有没有三要素?如何确定?如何确定?思考:思考:注意:注意:用用 y表示表示 x,x=(y)满足函数的定义满足函数的定义 自变量与函数对调自变量与函数对调 定义域与值域对调定义域与值域对调 写法:写法:x=f 1(y)考虑到考虑到“用用 y表示自变量表示自变量 x的函数的函数”的习惯,将的习惯,将 x=f 1(y)写成写成 y=f 1(x)例例1:求下列函数的反函数:求下列函数的反函数:);(13Rxxy (1)解:解:x R y yR 由由,13 xy解得解得,31 yx函数函数)(13Rxxy 的反函数是的反函数是)(31Rxxy )(13Rxx

    4、y)0(1xxy(2)(3)解:解:x 0 y1 由由,1 xy解得解得2)1(yx函数函数)0(1xxy的反函数是的反函数是)1()1(2 xxy)(13Rxxy )1,(132且且 xRxxxy(4))2,(23且且 xRxxxy求函数反函数的步骤求函数反函数的步骤:1 求原函数的值域求原函数的值域2 反解反解3 x与与y互换互换4 写出反函数及它的定义域写出反函数及它的定义域 例例2(3)y=x2(x0)的反函数是的反函数是_ (2)y=x2(x0)的反函数是的反函数是_(1)y=x2(xR)有没有反函数有没有反函数?没有没有)0(xxy)0(xxy)0(xxy 例例3:求函数:求函数2

    5、11xy (1 x 0)的反函数。的反函数。1 x 021x 211xy 22yyx211xy 22xxy解:解:0 1 0 y 1解得(1 x 0)由(1 x 0)的反函数的反函数是:(0 x 1)0 x2 101 x2 1例例2 2、求函数、求函数 )01()10(122xxxxy1 yx1)(1 xxfyx x 的反函数。的反函数。解:解:当当 0 0 x x11时时 1 1x x2 2 1 100即即-1-1y y 0 0(1 1y y 0)0)0 x2 1 即即 0 y 1 由由 y=x2 (1 x 0)解得解得(0 y 1)(1xf(0 x 1)当当-1 -1 x x 00时时)0

    6、1(x原函数的反函数为原函数的反函数为 1)x (0 xxxxf)01(1)(1由由y y=x x2 2 1 1(0(0 x x1)1)解得解得(一)课堂练习(一)课堂练习(1)函数)函数y=2|x|在下列哪个定义区间内不存在反在下列哪个定义区间内不存在反函数?函数?()(A)2,4;(B)-4,4 (C)0,+)(D(-,0225x B(2)已知已知y=,x-4,0,求出它的反求出它的反函数函数,并指明定义域。并指明定义域。小结:小结:反函数的定义:反函数的定义:反函数的求法:反函数的求法:注意点:注意点:1.反函数的定义域为原函数的值域;反函数的定义域为原函数的值域;2.反函数的值域为原函

    7、数的定义域。反函数的值域为原函数的定义域。作业:作业:P68-69习题习题2.4 1,2两直线的位置关系两直线的位置关系 直线与直线的位置关系:直线与直线的位置关系:(1)有斜率有斜率的两直线的两直线l1:y=k1x+b1;l2:y=k2x+b2 l1l2 k1=k2且且b1b2;l1l2 k1k2=-1;l1与与l2相交相交 k1k2 l1与与l2重合重合 k1=k2且且b1=b2。(2)一般式的直线一般式的直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0 l1l2 A1B2-A2B1=0 且且 B1C2-B2C10 l1l2 A1A2+B1B2=0 l1与与l2相交相交

    8、A1B2-A2B10 l1与与l2重合重合 A1B2-A2B1=0且且B1C2-B2C1=0。到角与夹角:到角与夹角:两条直线两条直线l1,l2相交构成四个角,它们是两对对顶角,把相交构成四个角,它们是两对对顶角,把l1依逆时针方向旋转到与依逆时针方向旋转到与l2重合时所转的角,叫做重合时所转的角,叫做l1到到l2的角的角,l1到到l2的角的范围是的角的范围是(0,)l1与与l2所成的角是指不大所成的角是指不大于直角的角,简称于直角的角,简称夹角夹角.到角的公式是到角的公式是 ,夹,夹角公式是角公式是 ,以上公式适用于两直线斜率都,以上公式适用于两直线斜率都存在,且存在,且k1k2-1,若不存

    9、在,由数形结合法处理,若不存在,由数形结合法处理.21121tankkk-k21121tankkk-k点与直线的位置关系:点与直线的位置关系:设点设点P(x0,y0),直线直线L:Ax+By+C=0上,则有上,则有(1)点在直线上:)点在直线上:Ax0+By0+C=0;(2)点不在直线上,则有)点不在直线上,则有Ax0+By0+C0(3)点)点 到直线到直线 的距离为:的距离为:),(00yxP0:CByAxl2200BACByAxd(4).两条平行线两条平行线l1:Ax+By+C1=0,l2:Ax+By+C2=0的的距离为:距离为:2221BACCd注意:注意:1、两直线的位置关系判断时,、

    10、两直线的位置关系判断时,要注意斜率不存在要注意斜率不存在 的情况的情况2、注意、注意“到角到角”与与“夹角夹角”的区分。的区分。3、在运用公式求平行直线间的距离、在运用公式求平行直线间的距离 时,一定要时,一定要把把x、y前面的系数化成相等。前面的系数化成相等。2221BACCd2.若直线若直线l1:mx+2y+6=0和直线和直线l2:x+(m-1)y+m2-1=0平行但不平行但不重合,则重合,则m的值是的值是_.1.已知点已知点P(1,2),直线,直线l:2x+y-1=0,则,则 (1)过点过点P且与直线且与直线l平行的直线方程为平行的直线方程为_,(2)过点过点P且与直线且与直线l垂直的直

    11、线方程为垂直的直线方程为_;(3)过点过点P且直线且直线l夹角为夹角为45的直线方程为的直线方程为_;(4)点点P到直线到直线L的距离为的距离为_,(5)直线直线L与直线与直线4x+2y-3=0的距离为的距离为_课前热身课前热身2x+y-4=0 x-2y+3=03x+y-5=0或或x+3y-7=0553105-11.已知两直线已知两直线l1:mx+8y+n=0和和l2:2x+my-1=0.试确定试确定 m、n的值,使的值,使l1与与l2相交于点相交于点P(m,-1);l1l2;l1l2,且,且l1在在y轴上的截距为轴上的截距为-1.【解题回顾解题回顾】若直线若直线l1、l2的方程分别为的方程分

    12、别为A1x+B1y+C1=0和和A2x+B2y+C2=0,则,则l1l2的必要条件是的必要条件是A1B2-A2B1=0,而,而l1l2的充要条件是的充要条件是A1A2+B1B2=0.解题中为避免讨论,常依解题中为避免讨论,常依据上面结论去操作据上面结论去操作.类型之一两条直线位置关系的判定与运用例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解解:若直线若直线l的斜率不存在,则的斜率不存在,则直线直线l的方程为的方程为x=3,此时与此时与l1、l

    13、2的交点分别是的交点分别是A1(3,-4)和)和B1(3,-9),),截得的线段截得的线段AB的长的长|AB|=|-4+9|=5,符合题意。符合题意。类型之二两条直线所成的角及交点B1A1AxPBOyl1l2(3,1)例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。若直线若直线l的斜率存的斜率存在,则设在,则设l的方程的方程为为y=k(x-3)+1,解方程组解方程组 y=k(x-3)+1 x+y+1=0 得A(),123kk114kk解方程组 y

    14、=k(x-3)+1 x+y+6=0 得B(,)173kk119kk由|AB|=5得2225)119114()173123(kkkkkkkk解之,得解之,得k=0,即所,即所求的直线方程为求的直线方程为y=1 综上可知,所求综上可知,所求l的方程的方程为为x=3或或y=1 B1A1AxPBOyl1l2(3,1)例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解二解二由题意,直线由题意,直线l1、l2之间之间的距离为的距离为d=2252|61|且直线

    15、且直线l被直线被直线l1、l2所截的线段所截的线段AB的长为的长为5,设直线设直线l与与l1的夹角为的夹角为,则则 225225sin故故=450 由直线由直线l1:x+y+1=0的倾斜角的倾斜角为为1350,知直线知直线l的倾斜角为的倾斜角为00或或900,又由直线又由直线l过点过点P(3,1),故),故所求所求l的方程为的方程为x=3或或y=1。B1A1AxPBOyl1l2(3,1)例例2、已知直线、已知直线l经过点经过点P(3,1),),且被两平行且被两平行直线直线l1:x+y+1=0和和l2:x+y+6=0截得的线段之长截得的线段之长为为5。求直线。求直线l的方程。的方程。解三解三设直

    16、线设直线l与与l1、l2分别相交于分别相交于A(x1,y1)、)、B(x2,y2),则),则x1+y1+1=0,x2+y2+6=0。两式相减,得(两式相减,得(x1-x2)+(y1-y2)=5 又又 (x1-x2)2+(y1-y2)2=25 联立 ,可得 x1-x2=5 或 x1-x2=0 y1-y2=0 y1-y2=5由上可知,直线由上可知,直线l的倾斜角的倾斜角为为00或或900,又由直线又由直线l过点过点P(3,1),),故所求故所求l的方程为的方程为x=3或或y=1。思维点拨思维点拨;要求直线方程只要有:点和;要求直线方程只要有:点和斜率(可有倾斜角算,也可以先找两点)。斜率(可有倾斜

    17、角算,也可以先找两点)。B1A1AxPBOyl1l2(3,1)例例3、点、点 关于直线关于直线 的对称点是的对称点是()对称问题对称问题(4,0)P54210 xyA(6,8)B(8,6)C(6,8)D(6,8)解:设点解:设点 关于直线关于直线 的对称点为的对称点为(4,0)P54210 xy111(,)P x y由轴对称概念由轴对称概念 的中点的中点 在对称轴在对称轴 上上 1PP1140(,)22xyM54210 xy且且 与对称轴垂与对称轴垂直,直,1PP则则有有 111145421 02244 5xyyx 解解得得 116,8,xy 1(6,8)P 点评:对称问题可化为点关于点对称,

    18、点关于直线对称的问题 D课前热身1、过点、过点A(3,0),且平行于直线,且平行于直线 的直线方程是的直线方程是_ 230 xy2360 xy2、两直线、两直线 与与 的夹角是的夹角是_ 320 xy3340 xy0603、两平行直线、两平行直线 和和 间的距离是间的距离是 _2yx25yx53、过直线、过直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为:交点的直线系方程为:A1x+B1y+C1+(A2x+B2y+C2)=0(R)(除除l2外外)。1、与直线、与直线Ax+By+C=0平行的直线方程为平行的直线方程为 Ax+By+m=02、与直线、与直线Ax+

    19、By+C=0垂直的直线方程为垂直的直线方程为Bx-Ay+m=0【例题选讲】【例题选讲】例例1、(优化设计优化设计P105P105例例2)2)已知两条直线已知两条直线 l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当当m为为何值时何值时,l1与与l2()()相交;()平行;()重合相交;()平行;()重合。思维点拨思维点拨 先讨论、系数为的情况。先讨论、系数为的情况。例例2、(优化设计优化设计P105P105例例1)1)等腰三角形一腰所等腰三角形一腰所在直线在直线 的方程是的方程是 ,底边所在直线,底边所在直线 的方程是的方程是 ,点(,点(-2-2,0 0)在另一腰上,)在另

    20、一腰上,求该腰所在直线求该腰所在直线 的方程。的方程。022 yx1l2l01yx3l评述本题根据条件作出评述本题根据条件作出 =的结论,的结论,而后利用到角公式,最后利用点斜式求出而后利用到角公式,最后利用点斜式求出的方程。的方程。123l例例3(3(优化设计优化设计P105P105例例3)3)已知点已知点P P(2 2,-1-1),),求:求:(1)过过P P点与原点距离为点与原点距离为2 2的直线的直线 的方的方程;程;(2)过过P P点与原点距离最大的直线点与原点距离最大的直线 的的方程,最大距离是多少?方程,最大距离是多少?(3 3)是否存在过是否存在过P P点与原点距离为点与原点距

    21、离为6 6的的直线?若存在,求出方程;若不存在,请直线?若存在,求出方程;若不存在,请说明理由。说明理由。ll评述评述求直线方程时一定求直线方程时一定要注意斜要注意斜率不存在的情况率不存在的情况 例例5、已知已知A(0,3),),B(-1,0),),C(3,0)求求D点的坐标,使四边形点的坐标,使四边形ABCD是等腰梯形。是等腰梯形。-1BOCAD2D1备用题:备用题:思维点拨;利用等腰三角形性质思维点拨;利用等腰三角形性质“两底平行两底平行且两腰相等且两腰相等”,用斜率相等及两点间距离公式。,用斜率相等及两点间距离公式。【课堂小结】课堂小结】1要认清直线平行、垂直的充要条件,应特要认清直线平行、垂直的充要条件,应特别注意别注意x、y的系数中一个为零的情况的讨论。的系数中一个为零的情况的讨论。2在运用一条直线到另一条直线的角的公式在运用一条直线到另一条直线的角的公式时要时要注意无斜率的情况注意无斜率的情况及及两直线垂直的情况两直线垂直的情况。点到直线的距离公式是一个基本公式,它涉及点到直线的距离公式是一个基本公式,它涉及绝对值、点在线上、最小值等内容。绝对值、点在线上、最小值等内容。【布置作业】优化设计优化设计P105、P106

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:反函数教学课件.ppt
    链接地址:https://www.163wenku.com/p-4680179.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库