书签 分享 收藏 举报 版权申诉 / 35
上传文档赚钱

类型北师大版初中八年级数学下册第6章第4节多边形的内角和与外角和课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4679858
  • 上传时间:2022-12-31
  • 格式:PPT
  • 页数:35
  • 大小:885.78KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《北师大版初中八年级数学下册第6章第4节多边形的内角和与外角和课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北师大 初中 八年 级数 下册 多边形 内角 外角 课件 下载 _八年级下册_北师大版(2024)_数学_初中
    资源描述:

    1、6.4 多边形的内角和与外角和第六章 平行四边形情境引入学习目标1.能通过不同方法探索多边形的内角和与外角和公式;(重点)2.学会运用多边形的内角和与外角和公式解决问题.(难点)法国的建筑事务所atelierd将协调坚固的蜂窝与人类天马行空的想象力结合,创造了这个“abeilles bee pavilion”.导入新课导入新课情景引入思考:你知道正六边形的内角和是多少吗?问题2 你知道长方形和正方形的内角和是多少 度?问题1 三角形内角和是多少度?三角形内角和 是180.都是360.问题3 猜想任意四边形的内角和是多少度?讲授新课讲授新课多边形的内角和一猜想:四边形ABCD的内角和是360.问

    2、题4 你能用以前学过的知识说明一下你的结论吗?猜想与证明方法1:如图,连接AC,四边形被分为两个三角形,所以四边形ABCD内角和为1802=360.ABCDABCDE方法2:如图,在BC边上任取一点E,连接AE,DE,所以该四边形被分成三个三角形,所以四边形ABCD的内角和为1803-(AEB+AED+CED)=1803-180=360.方法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形:ABE,ADE,CDE,CBE.所以四边形ABCD内角和为:1804-(AEB+AED+CED+CEB)=1804-360=360.ABCDEABCDP方法4:如图

    3、,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.所以四边形ABCD内角和为180 3 180=360.这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.结论:四边形的内角和为360.例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.解:如图,四边形ABCD中,A+C=180.A+B+C+D=(42)180=360,BD=360(AC)=360 180=180.ABCD如果一个四边形的一组对角互补,那么另一组对角互补.典例精析【变式题】如图,在四边形ABCD中,A与C互补,BE平分ABC,DF平分

    4、ADC,若BEDF,求证:DCF为直角三角形证明:在四边形ABCD中,A与C互补,ABC+ADC=180,BE平分ABC,DF平分ADC,CDF+EBF=90,BEDF,EBF=CFD,CDF+CFD=90,故DCF为直角三角形运用了整体思想ACDEBABCDEF问题5 你能仿照求四边形内角和的方法,选一种方法求五边形和六边形内角和吗?内角和为180 3=540.内角和为180 4=720.n 边形六边形五边形四边形三角形多边形内角和分割出三角形的个数从多边形的一顶点引出的对角线条数图形边数0n-3 1231234 n-2(n-2)1801180=1802180=360 3180=540418

    5、0=720由特殊到一般 分割多边形三角形分割点与多边形的位置关系顶点边上内部外部转化思想总结归纳多边形的内角和公式n边形内角和等于(n-2)180.例2 一个多边形的内角和比四边形的内角和多720,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?解:设这个多边形边数为n,则 (n-2)180=360+720,解得n=8,这个多边形的每个内角都相等,(8-2)180=1080,它每一个内角的度数为10808=135例3 如图,在五边形ABCDE中,C=100,D=75,E=135,AP平分EAB,BP平分ABC,求P的度数解析:根据五边形的内角和等于540,由C,D,E的度数可求EA

    6、B+ABC的度数,再根据角平分线的定义可得PAB与PBA的角度和,进一步求得P的度数可运用了整体思想解:EAB+ABC+C+D+E=540,C=100,D=75,E=135,EAB+ABC=540-C-D-E=230.AP平分EAB,PAB EAB,同理可得ABP ABC,P+PAB+PBA=180,P=180-PAB-PBA=180 (EAB+ABC)=180 230=6512121212多边形的外角和二小刚每跑完一圈,身体转过的角度之和是多少?多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.如图,A的外角是1.EBCD123 45A 多边形所有外角的和叫做这个多边形的外

    7、角和.概念学习如图,在五边形的每个顶点处各取一个外角问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?EBCD123 45A互补5180=900EBCD123 45A五边形外角和=360=5个平角五边形内角和=5180(52)180结论:五边形的外角和等于360.问题3:这五个平角和与五边形的内角和、外角和有什么关系?在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和n边形外角和n边形的外角和等于360.(n2)180=360=n个平角-n边形内角和=n180 AnA2A3A4123 4nA1思考:n边形的外角和又是多少呢?与边数无

    8、关问题4:回想正多边形的性质,你知道正多边形的每个内角是多少度吗?每个外角呢?为什么?每个内角的度数是每个外角的度数是(2)180,nn 360.n练一练:(1)若一个正多边形的内角是120,那么这是正_边形.(2)已知多边形的每个外角都是45,则这个多边形是 _边形.六正八60 90 120(2)180nn练一练完成下面的表格:108 135 例4 已知一个多边形,它的内角和等于外角和的 2倍,求这个多边形的边数.解:设多边形的边数为n.它的内角和等于(n2)180,多边形外角和等于360,(n2)180=2 360.解得 n=6.这个多边形的边数为6.例5 已知一个多边形的每个内角与外角的

    9、比都 是7:2,求这个多边形的边数.解法一:设这个多边形的内角为7x,外角为2x,根据题意得 7x+2x=180,解得 x=20.即每个内角是140,每个外角是40.360 40=9.答:这个多边形是九边形.还有其他解法吗?解法二:设这个多边形的边数为n,根据题意得解得n=9.答:这个多边形是九边形.18027,3602n【变式题】一个正多边形的一个外角比一个内角大60,求这个多边形的每个内角的度数及边数解:设该正多边形的内角是x,外角是y,则得到一个方程组 解得而任何多边形的外角和是360,则该正多边形的边数为360120=3,故这个多边形的每个内角的度数是60,边数是三条60,180,yx

    10、xy60,120.xy例6 如图,在正五边形ABCDE中,连接BE,求BED的度数解:由题意得AB=AE,所以AEB=(180-A)=36,所以BED=AED-AEB=108-36=72.52180=1085AAED,12当堂练习当堂练习1.判断(1)当多边形边数增加时,它的内角和也随着增加.()(2)当多边形边数增加时,它的外角和也随着增加.()(3)三角形的外角和与八边形的外角和相等 ()2.一个正多边形的内角和为720,则这个正多边形的每一个内角等于_1203.如图所示,小华从点A出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,照这样走下去,他第一次回到出发地点A时,

    11、走的路程一共是_米1504.一个多边形的内角和不可能是()A.1800 B.540 C.720 D.810 D5.一个多边形从一个顶点可引对角线3条,这个多边形 内角和等于()A.360 B.540 C.720 D.900 C6.一个多边形的内角和为1800,截去一个角后,求得到的多边形的内角和.解:180018010,原多边形边数为10212.一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,新多边形的边数可能是11,12,13,新多边形的内角和可能是1620,1800,1980.能力提升:如图,求1234567的度数.解:如图,3489,12345671289567五边形的内角和540.89课堂小结课堂小结多边形的内角和内角和计算 公 式(n-2)180(n 3的整数)外角和多边形的外角和等于360特别注意:与边数无关.正多边形内角=,外角=(2)180nn 360n见学练优本课时练习课后作业课后作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北师大版初中八年级数学下册第6章第4节多边形的内角和与外角和课件.ppt
    链接地址:https://www.163wenku.com/p-4679858.html
    晟晟文业
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2.6一元一次不等式组 第1课时 一元一次不等式组的解法(1)(课件)北师大版数学八年级下册.pptx2.6一元一次不等式组 第1课时 一元一次不等式组的解法(1)(课件)北师大版数学八年级下册.pptx
  • 2.1不等关系(课件)北师大版数学八年级下册.pptx2.1不等关系(课件)北师大版数学八年级下册.pptx
  • 1.3 线段的垂直平分线 第2课时 三角形三边的垂直平分线(课件)北师大版数学八年级下册.pptx1.3 线段的垂直平分线 第2课时 三角形三边的垂直平分线(课件)北师大版数学八年级下册.pptx
  • 1.1等腰三角形 第1课时 等腰三角形的性质(课件)北师大版数学八年级下册.pptx1.1等腰三角形 第1课时 等腰三角形的性质(课件)北师大版数学八年级下册.pptx
  • 2.2不等式的基本性质(课件)北师大版数学八年级下册.pptx2.2不等式的基本性质(课件)北师大版数学八年级下册.pptx
  • 1.1等腰三角形 第2课时 等腰三角形的特殊性质和等边三角形的性质(课件)北师大版数学八年级下册.pptx1.1等腰三角形 第2课时 等腰三角形的特殊性质和等边三角形的性质(课件)北师大版数学八年级下册.pptx
  • 2.6一元一次不等式组 第2课时 一元一次不等式组的解法(2)(课件)北师大版数学八年级下册.pptx2.6一元一次不等式组 第2课时 一元一次不等式组的解法(2)(课件)北师大版数学八年级下册.pptx
  • 1.4 角平分线 第1课时 角平分线(课件)北师大版数学八年级下册.pptx1.4 角平分线 第1课时 角平分线(课件)北师大版数学八年级下册.pptx
  • 2.5一元一次不等式与一次函数 第2课时 一元一次不等式与一次函数的应用(课件)北师大版数学八年级下册.pptx2.5一元一次不等式与一次函数 第2课时 一元一次不等式与一次函数的应用(课件)北师大版数学八年级下册.pptx
  • 2.3不等式的解集(课件)北师大版数学八年级下册.pptx2.3不等式的解集(课件)北师大版数学八年级下册.pptx
  • 1.4 角平分线 第2课时 三角形三个内角的平分线(课件)北师大版数学八年级下册.pptx1.4 角平分线 第2课时 三角形三个内角的平分线(课件)北师大版数学八年级下册.pptx
  • 2.4一元一次不等式 第2课时 一元一次不等式的应用(课件)北师大版数学八年级下册.pptx2.4一元一次不等式 第2课时 一元一次不等式的应用(课件)北师大版数学八年级下册.pptx
  • 1.3 线段的垂直平分线 第1课时 线段的垂直平分线(课件)北师大版数学八年级下册.pptx1.3 线段的垂直平分线 第1课时 线段的垂直平分线(课件)北师大版数学八年级下册.pptx
  • 1.1等腰三角形 第3课时 等腰三角形的判定(课件)北师大版数学八年级下册.pptx1.1等腰三角形 第3课时 等腰三角形的判定(课件)北师大版数学八年级下册.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库