北师大版八年级数学下册课件-421提公因式法(共54张).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级数学下册课件-421提公因式法(共54张).ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 下册 课件 421 公因式 54 下载 _八年级下册_北师大版(2024)_数学_初中
- 资源描述:
-
1、1.整式乘法有几种形式整式乘法有几种形式?(1)单项式乘以单项式单项式乘以单项式 (2)单项式乘以多项式单项式乘以多项式:a(m+n)=am+an (3)多项式乘以多项式多项式乘以多项式:(a+b)(m+n)=am+an+bm+bn 2.乘法公式有哪些乘法公式有哪些?(1)平方差公式平方差公式:(a+b)(a-b)=a2-b2 (2)完全平方公式完全平方公式:(ab)2=a22ab+b2练习一 理解概念判断下列各式哪些是整式乘法判断下列各式哪些是整式乘法?哪些是因式分解哪些是因式分解?(1).x2-4y2=(x+2y)(x-2y)(2).2x(x-3y)=2x2-6xy (3).(5a-1)2
2、=25a2-10a+1 (4).x2+4x+4=(x+2)2 (5).(a-3)(a+3)=a2-9 (6).m2-4=(m+4)(m-4)(7).2 R+2 r=2(R+r)因式分解因式分解整式乘法整式乘法整式乘法整式乘法因式分解因式分解整式乘法整式乘法因式分解因式分解因式分解因式分解辨别下列运算是不是因式分解辨别下列运算是不是因式分解.).2)(2(4.4.2)3(23.3).2(336.2.84)2(4.1222232aaaxxxxxaxaxaxbaabaa()()()()不是不是不是不是是是是是.规律总结 分解因式与整式乘法是互逆过程分解因式与整式乘法是互逆过程.分解因式要注意以下几点
3、分解因式要注意以下几点:1.分解的对象必须是多项式分解的对象必须是多项式.2.分接的结果一定是几个整式的分接的结果一定是几个整式的乘积的形式乘积的形式.3.要分解到不能分解为止要分解到不能分解为止.多项式中各项都含有的相同因式,叫做这个多项式的公因式。mcmbma相同因式m这个多项式有什么特点?应提取的公因式为应提取的公因式为:_:_议一议:多项式有公因式吗?是什么?2336ax yx yz 233ax ya x x y 362 3x yzx x x y z 23x y公因式的确定方法:公因式的确定方法:应提取的公因式的是:各项系数的最大公约数与应提取的公因式的是:各项系数的最大公约数与各项各
4、项都含有的相同字母的最低次数幂的积。都含有的相同字母的最低次数幂的积。例:找 3 x 2 6 xy 的公因式。系数:最大公约数。3字母:相同的字母x 所以,公因式是3x。指数:相同字母的最低次幂1练一练:多项式多项式公因式公因式232515ab cb c 3223410a ba b c 2ab 2()ab25b c 25()b c222a b 222()a b因式分解结果224a babc 应提取的公因式的是:各项系数的最大公约数与应提取的公因式的是:各项系数的最大公约数与各项各项都含有的相同字母的最低次数幂的积。都含有的相同字母的最低次数幂的积。2ac 3abc 25abc 正确找出多项式各
5、项公因式的关键是:1、定系数:公因式的系数是多项式各项系数的最大公约数。2、定字母:字母取多项式各项中都含有的相同的字母。3、定指数:相同字母的指数取各项中最小的一个,即字母最低次幂 你知道吗?找一找:下列各多项式的公因式是什么?(3)(a)(a2)(2(m+n))(3mn)(-2xy)(1)3x+6y(2)ab-2ac(3)a 2-a 3(4)4(m+n)2+2(m+n)(5)9 m 2n-6mn (6)-6 x 2 y-8 xy 2 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。(a+b+c )ma+mb
6、+mcm=(1)8a3b2+12ab3c例1:把下列各式分解因式分析:提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积。(2)2a(b+c)-3(b+c)注意:公因式既可以是一个单项式的形式,也可以是一个多项式的形式整体思想是数学中一种重要而且常用的思想方法。把12x2y+18xy2分解因式解:原式=3xy(4x+6y)错误公因式没有提尽,还可以提出公因式2注意:公因式要提尽。诊断正确解:原式=6xy(2x+3y)当多项式的某一项和公因式相同时,提公因式后剩余的项是1。错误注意:某项提出莫漏1。解:原式=x(3x-6y)把3x2-6xy+x分解因式正
7、确解:原式=3x.x-6y.x+1.x =x(3x-6y+1)提出负号时括号里的项没变号错误诊断把-x2+xy-xz分解因式解:原式=-x(x+y-z)注意:首项有负常提负。正确解:原式=-(x2-xy+xz)=-x(x-y+z)看你能否过关?把下列各式分解因式:(1)8 m2n+2mn(2)12xyz-9x2y2(3)p(a2+b2)-q(a2+b2)(4)-x3y3-x2y2-xy 例2 把 12b(a-b)2 18(b-a)2 分解因式解:12b(a-b)2 18(b-a)3 =12b(a-b)2+18(a-b)3 =6(a-b)2 2b+3(a-b)=6(a-b)2(2b+3a-3b)
8、=6(a-b)2(3a-b)练习:(x-y)2+y(y-x)2、确定公因式的方法:小结3、提公因式法分解因式步骤(分两步):1、什么叫因式分解?(1)定系数 (2)定字母 (3)定指数第一步,找出公因式;第二步,提取公因式.4、提公因式法分解因式应注意的问题:(1)公因式要提尽;(2)小心漏掉1;(3)提出负号时,要注意变号.记住哟!1、计算(-2)101+(-2)1002、已知,求代数式 的值。42 yx3xy222xyyx例1:确定下列多项式的公因式,并分解因式()32126 xx()332315 pqp q()4369ababxaby()23482 xaxx提取公因式法的一般步骤提取公因
9、式法的一般步骤:(1 1)确定应提取的公因式)确定应提取的公因式(2 2)多项式除以公因式,所得的商作为另一个因式)多项式除以公因式,所得的商作为另一个因式(3 3)把多项式写成这两个因式的积的形式)把多项式写成这两个因式的积的形式练一练:分解因式32(1)32()aaaa 32(2)1022()6pppp 2321aa2351pp练一练:分解因式2(1)39 xxy 2(2)36 mxnx 2(3)2102 ab4a bab例2:分解因式22()abab括号前面是“+”号,括到括号里的各项都不变号;括号前面是“”号,括到括号里的是各项都变号。添括号则:下面的分解因式对吗?如果不对,应怎样改正
10、?()()()()()()()()xxxxxxa ca ca cacssss ssa babaab aba 232232322221 23232 3632324624644682238()xxx 2231()aac 2312()s ss2232()baab 22342将下列各多项式因式分解将下列各多项式因式分解:.51520.3.3.2.12222xyxyyxxyyxaayax.提取公因数后提取公因数后,括号内的多项式的项数与括号内的多项式的项数与原多项式的项数相同原多项式的项数相同.利用整式的乘法来检验因式分解是否正确利用整式的乘法来检验因式分解是否正确.、下列各式均用提取公因式法因式分解、
11、下列各式均用提取公因式法因式分解,其中其中正确的是正确的是()A.6(x2)x(2x)=(x2)(6x)B.x33x2x=x(x23x)C.a(ab)2ab(ab)=a(ab)D.3xn16xn=3xn(x2)D灵活运用灵活运用:2、m2(a2)m(2a)分解因式等于()分解因式等于()A.(a2)(m2m)B.m(a2)(m1)C.m(a2)(m1)D.以上答案都不对以上答案都不对C3、下列各式正确的是()、下列各式正确的是()A.(xy)2n=(yx)2n(n为正整数为正整数)B.整式整式x210可分解为可分解为(x3)(x3)1C.整式整式xy(yx)2可分解为可分解为(xy)(1yx)
展开阅读全文