函数的对称性与函数的图象变换总结课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数的对称性与函数的图象变换总结课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 对称性 图象 变换 总结 课件
- 资源描述:
-
1、有些函数有些函数 其图像有着优美的对称性,其图像有着优美的对称性,同时又有着优美的对称关系式同时又有着优美的对称关系式1-3-1-265432-xx(1)(1)ff(2)(2)ff()()fxf x780 x(偶函数)(偶函数)Y=f(x)图像关于直线图像关于直线x=0对称对称知识回顾知识回顾l从从”形形”的角度看,的角度看,l从从“数数”的角度看,的角度看,f(-x)=f(x)XY1-3-1-265432782x()f x f(x)=f(4-x)f(1)=f(0)=f(-2)=f(310)=f(6)f(4-310)0 x4-xY=f(x)图像关于直线图像关于直线x=2对称对称f(3)f(4)
2、l从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,xy-1+x-1-x1-3-1-26543278x=-1 f(-1+x)=f(-1-x)思考思考?若若y=f(x)图像关于直线图像关于直线x=-1对称对称 f(x)=f(-2-x)Yxly=f(x)图像关于直线图像关于直线x=a对称对称 f(x)=f(2a-x)f(a-x)=f(a+x)ly=f(x)图像关于直线图像关于直线x=0对称对称 f(x)=f(-x)特例:特例:a=0轴对称性轴对称性思考?思考?若若y=f(x)满足满足f(a-x)=f(b+x),则函数图像关于则函数图像关于 对称对称 a+b2x=直线直线xa-xxx
3、yof(-x)=-f(x)y=f(x)图像关于图像关于(0,0)中心对称中心对称中心对称性中心对称性类比探究类比探究 al从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,f(x)=-f(2a-x)f(a-x)=-f(a+x)xyo al从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,中心对称性中心对称性类比探究类比探究 a+x a-x y=f(x)图像关于图像关于(a,0)中心对称中心对称baf(a+x)=2b-f(a-x)f(2a-x)=2b-f(x)b中心对称性中心对称性 y=f(x)图像关于图像关于(a,b)中心对称中心对称类比探究类比探究xyo思考?
4、思考?(1)若若y=f(x)满足满足f(a-x)=-f(b+x),(2)若若y=f(x)满足满足f(a-x)=2c-f(b+x),则函数图像关于则函数图像关于 对称对称 a+b2(,0)点点则函数图像关于则函数图像关于 对称对称 a+b2(,C)点点-x x 函数图像关于直线函数图像关于直线x=0对称对称f(-x)=f(x)函数图像关于直线函数图像关于直线x=a对称对称f(a-x)=f(a+x)x=af(x)=f(2a-x)函数图像关于函数图像关于(0,0)中心对称中心对称函数图像关于函数图像关于(a,0)中心对称中心对称f(-x)=-f(x)f(a-x)=-f(a+x)f(x)=-f(2a-
5、x)轴对称轴对称中心对称性中心对称性练习练习:(1)若若y=f(x)满足满足f(-2-x)=f(-2+x),则函数图像关于则函数图像关于 对称对称(2)若若y=f(x)满足满足f(3-x)=f(4+x)(4)若若y=f(x)满足满足f(3-x)=-f(4+x)(3)若若y=f(x)满足满足f(-2-x)=-f(-2+x),(5)若若y=f(x)满足满足f(3-x)=3-f(4+x)函数图象是研究函数图象是研究函数的重要工具函数的重要工具,它能它能为所研究函数的数量为所研究函数的数量关系及其图象特征提关系及其图象特征提供一种供一种”形形”的直观的直观体现体现,是利用是利用”数形结数形结合合”解题
6、的重要基础解题的重要基础.问题问题1:如何由:如何由f(x)=x2的图象得到下列各函的图象得到下列各函数的图象?数的图象?(1)f(x-1)=(x-1)2(2)f(x+1)=(x+1)2(3)f(x)+1=x2+1(4)f(x)-1=x2-1Oyxy=f(x-1)y=f(x+1)y=f(x)-1y=f(x)+1函数图象的平移变换:函数图象的平移变换:左右平移左右平移y=f(x)y=f(x)y=f(x+a)y=f(x+a)a0,向左平移a个单位a0,向右平移|a|个单位上下平移y=f(x)y=f(x)y=f(x)+ky=f(x)+kk0,向上平移k个单位11-1-1同步练习同步练习:若函数若函数
7、f(x)恒过定点恒过定点(1,1),则函数则函数f(x-4)-2恒过恒过定点定点 .若函数若函数f(x)关于直线关于直线x=1对称对称,则函数则函数f(x-4)-2关于直线关于直线 对称对称.(5,-1)x=5问题问题2.设f(x)=(x0),求函数y=-f(x)、y=f(-x)、y=-f(-x)的解析式及其定义域,并分别作出它们的图象。x1x xyo1y=f(x)x xyo1y=f(x)x xyo1y=f(x)y=-f(x)y=f(-x)y=-f(-x)对称变换对称变换(1)y=f(x)与与y=f(-x)的图象关于的图象关于 对称;对称;(2)y=f(x)与与y=-f(x)的图象关于的图象关
8、于 对称;对称;(3)y=f(x)与与y=-f(-x)的图象关于的图象关于 对称;对称;x 轴y 轴原 点 练习:说出下列函数的图象与指数函数练习:说出下列函数的图象与指数函数y=2y=2x x的的图象的关系,并画出它们的示意图图象的关系,并画出它们的示意图.(1)y=2-x(2)y=-2x(3)y=-2-xOyOyOy11-11-1xxx1.函数函数y=f(-x)与函数与函数y=f(x)的图像关于的图像关于y轴对称轴对称2.函数函数y=-f(x)与函数与函数y=f(x)的图像关于的图像关于x轴对称轴对称3.函数函数y=-f(-x)与函数与函数y=f(x)的图像关于原点对称的图像关于原点对称4
9、.函数函数y=f(x)与函数与函数y=f(2a-x)的图像关于直线的图像关于直线 对称对称函数图象对称变换的规律函数图象对称变换的规律:思考思考:“函数函数y=f(x)与函数与函数y=f(2a-x)的图像关于直线的图像关于直线x=a对称对称”与与“函数函数y=f(x)满足满足f(x)=f(2a-x),则函数则函数y=f(x)关于直线关于直线x=a对称对称”两者间有何区别两者间有何区别?对称变换是指对称变换是指两个两个函数图象之间的对称关系函数图象之间的对称关系,而而”满足满足f(x)=f(2a-x)或或f(a+x)=f(a-x)有有y=f(x)关于直线关于直线x=a对称对称”是指是指一个一个函
10、数自身的性质属性函数自身的性质属性,两者不可混为一谈两者不可混为一谈.x=a问题问题3:分别在同一坐标系中作出下列各组函:分别在同一坐标系中作出下列各组函数的图象,并说明它们之间有什么关系?数的图象,并说明它们之间有什么关系?(1)y=2x与与y=2|x|Oxy由由y=f(x)的图象作的图象作y=f(|x|)的图象:的图象:y=2x 保留保留y=f(x)中中y轴右侧部分,轴右侧部分,再加上再加上y轴右侧部分轴右侧部分关于关于y轴对称轴对称的图形的图形.1y=2|x|22(2)23|23|yxxyxx与Oyx-414-1由由y=f(x)的图象作的图象作y=|f(x)|的图象:的图象:保留保留y
展开阅读全文