北师大版八年级数学上册21认识无理数课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北师大版八年级数学上册21认识无理数课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 上册 21 认识 无理数 课件 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、 已知一个直角三角形的两条直角边长已知一个直角三角形的两条直角边长分别为分别为1和和 2,算一算斜边长,算一算斜边长x的平方的平方 ,x是整数是整数(或分数或分数)吗?吗?12x导入导入新知新知1.通过拼图活动和勾股定理的应用感受通过拼图活动和勾股定理的应用感受无理无理数数产生的实际背景和引入的产生的实际背景和引入的必要性必要性 2.能能判断判断一一个数是否个数是否为有理数为有理数.素养目标素养目标 把把两个边长为两个边长为1的小正方形通过剪、拼,设法的小正方形通过剪、拼,设法得到一个大正方形得到一个大正方形1111 探究一探究一:下面请同学们拿出准备好的两个边长下面请同学们拿出准备好的两个边
2、长为为1 1的小正方形的小正方形探究新知探究新知知识点 111方法一方法一探究新知探究新知即两个相同最简分数的乘积仍是分数.因为没有一个整数或分数的平方为5,所以b不是有理数.在a2=2中,a不是有理数.所以这个正方形的边长不是有理数早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”.面积为 的正方形 D.没有两个相同的分数相乘得5,故b不可能是分数.满足下列条件的数a不是有理数的是()面积为 的正方形 D.解:答案不唯一如图所示:AB22,2不能写成一个整数或分数的平方,所以AB表示的数是非有理数因为没有一个整数或分数的平方为5,所以b不是有理
3、数.面积为 的正方形 D.面积为 的正方形 D.提示:解决本题的关键是理解五个小正方形的面积的和就是拼成的正方形的面积(1)如图,以直角三角形的斜边为边的正方形的面积是多少?两直角边分别是3和5的直角三角形的斜边长是()整数 B.思考:设大正方形的边长为a,则a满足什么条件?解:答案不唯一如图所示:思考思考:设大正方形的边长为设大正方形的边长为a,则则a满足什么条件满足什么条件?方方法法二二a探究新知探究新知a2=22.a可能是分数吗?说说你的可能是分数吗?说说你的理由理由.探究二探究二:1.a可能是整数吗?说说你的可能是整数吗?说说你的理由理由.探究新知探究新知a2=2a因为因为a2=2,1
4、a24 ,得到,得到1a 2,所以所以a一定不是整数一定不是整数;因为因为所以所以a一定不是分数一定不是分数.在等式在等式a2=2中,中,a既不是整数,也既不是整数,也不是分数,那么不是分数,那么一定不是有理数一定不是有理数.探究新知探究新知即两个相同最简分数的乘积仍是分数即两个相同最简分数的乘积仍是分数.a2=2a111224,224339,归纳总结归纳总结有理数包括:整数和分数有理数包括:整数和分数.如果一个数既不是整数也不是分数,如果一个数既不是整数也不是分数,那么这个数不是有理数那么这个数不是有理数.在在a2=2中,中,a不是有理数不是有理数.探究新知探究新知例例 如如图,有一个由五个
5、边长图,有一个由五个边长为为1的的小正方形组成的图形,我小正方形组成的图形,我们可以把它剪拼成一个正方形则拼成的正方形的面积是多们可以把它剪拼成一个正方形则拼成的正方形的面积是多少?这个正方形的边长是有理数吗?少?这个正方形的边长是有理数吗?解:解:因为小正方形的边长为因为小正方形的边长为1,所以所以每个小正方形的面积为每个小正方形的面积为1,所以所以拼成的正方形的面积为拼成的正方形的面积为 515.因为因为找不到平方等于找不到平方等于5的有理数,的有理数,所以所以这个正方形的边长这个正方形的边长不是有理数不是有理数 探究新知探究新知素养考点素养考点 1非有理数的识别非有理数的识别提示:提示:
6、解决本题的关键是解决本题的关键是理解五个小正方形的面积理解五个小正方形的面积的和就是拼成的正方形的的和就是拼成的正方形的面积面积1.满足满足下列条件的数下列条件的数a不是有理数的是不是有理数的是()A2a58 Ba20.16Ca27 Da292.下列下列说法:有理数都是有限小数;有限小说法:有理数都是有限小数;有限小数都是有理数;有理数都是无限循环小数;数都是有理数;有理数都是无限循环小数;无限循环小数都是有理数其中正确的有无限循环小数都是有理数其中正确的有()A B C DCD巩固练习巩固练习变式训练变式训练(1)(1)如图,以直角三角形的斜边为边的正方形的面积是多少?如图,以直角三角形的斜
7、边为边的正方形的面积是多少?(2)2)设该正方形的边长为设该正方形的边长为b,则,则b应满足什么条件?应满足什么条件?b是有理数是有理数吗?吗?解:解:b2=5.因为因为22=4,32=9,459,所以所以b不可能不可能是整数是整数.没有两个相同的分数相乘得没有两个相同的分数相乘得5,故,故b不可能是分数不可能是分数.因为没有一个整数或分数的平方为因为没有一个整数或分数的平方为5,所以,所以b不是有理数不是有理数.探究新知探究新知知识点 2利用勾利用勾股定股定理发现非有理数理发现非有理数解:解:两条直角边分别为两条直角边分别为1和和2,根据勾股定理,得根据勾股定理,得12+22=5,所以正方形
8、的面积是所以正方形的面积是5.像像上面讨论的数上面讨论的数a,b都不是有理数,而是另一类数都不是有理数,而是另一类数无理数无理数.早在公元前,古希腊数学家毕达哥拉斯认为万物皆早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数数”,即,即“宇宙宇宙间的一切现象都能归结为整数或整数之比间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希但是这个学派中的一个叫希伯索斯的成员却发现边长为伯索斯的成员却发现边长为1 1的正方形的对角线的长不能用整数或整数之的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被比来表示,这个发现动摇了毕达哥拉斯学派
展开阅读全文