书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型数学:32《空间向量在立体几何中的应用》课件-人教版选修2-1.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4673841
  • 上传时间:2022-12-31
  • 格式:PPT
  • 页数:15
  • 大小:529.19KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数学:32《空间向量在立体几何中的应用》课件-人教版选修2-1.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    空间向量在立体几何中的应用 数学 32 空间 向量 立体几何 中的 应用 课件 人教版 选修 下载 _其他_数学_高中
    资源描述:

    1、13.2利用向量解决 空间角问题2 空间向量的引入为代数方法处理立体几空间向量的引入为代数方法处理立体几何问题提供了一种重要的工具和方法,解题何问题提供了一种重要的工具和方法,解题时,可用定量的计算代替定性的分析,从而时,可用定量的计算代替定性的分析,从而避免了一些繁琐的推理论证。求空间角与距避免了一些繁琐的推理论证。求空间角与距离是立体几何的一类重要的问题,也是高考离是立体几何的一类重要的问题,也是高考的热点之一。本节课主要是讨论怎么样用向的热点之一。本节课主要是讨论怎么样用向量的办法解决空间角问题。量的办法解决空间角问题。3123(,)aa a a1.若,123(,),bb b b则:数量

    2、积:a b 1 1223 3aba ba b夹角公式:cosa b 111222(,),(,)A x y zB xyz2.若,则:212121(,)xx yy zzAB|a bab 1 12 23 3222222123123aba ba baaabbb|cos,aba b4异面直线所成角的范围:0,2ABCD1D,CD AB 与 的关系?思考:思考:,DC AB 与 的关系?结论:结论:coscos,CD AB|题型一:线线角题型一:线线角5例一:090,Rt ABCBCAABC中,现将沿着111ABCABC平面的法向量平移到位置,已知1BCCACC,111111ABACDF取、的中点、,11

    3、BDAF求与所成的角的余弦值.A1AB1BC1C1D1F题型一:线线角题型一:线线角6解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:CxyzA1AB1BC1C1D1Fxyz11CC(1,0,0),(0,1,0),AB1111 1(,0,),(,1)22 2Fa D所以:11(,0,1),2AF 111(,1)22BD 11cos,AF BD 1111|AF BDAFBD 113041053421BD1AF所以 与 所成角的余弦值为3010题型一:线线角题型一:线线角7练习:题型一:线线角题型一:线线角在长方体 中,1111ABCDABC D58,ABAD=,14,AA 1112,M

    4、BCB M 为上的一点,且1NAD点 在线段上,1.ADAN1.ADAM(1)求证:ABCD1A1B1C1DMNxyz(0,0,0),A(5,2,4),AM 1(0,8,4),AD 10AM AD 1.ADAM1(0,0,4),A(0,8,0),D(5,2,4)M8题型二:线面角题型二:线面角直线与平面所成角的范围:直线与平面所成角的范围:0,2ABO,n BA 与 的关系?思考:思考:n结论:结论:sincos,n AB|题型二:线面角题型二:线面角直线直线AB与平面与平面所成的角所成的角可可看成是向量与平面看成是向量与平面的法向量所成的锐角的法向量所成的锐角的余角,所以有的余角,所以有 n

    5、ABnABnAB,cossin9例二:题型二:线面角题型二:线面角在长方体 中,1111ABCDABC D58,ABAD=,14,AA 112,MBCB M 为上的一点,且1NAD点 在线段上,1.ADAN1.ADAM(1)求证:ABCD1A1B1C1DMNxyz(0,0,0),A(0,8,0),AD 1(0,8,4),AD ADANM(2)求与平面所成的角.1(0,0,4),A(0,8,0),D1cos,AD AD 2 55ADANM与平面所成角的正弦值是2 5510练习:1111ABCDABC D的棱长为的棱长为1.111.B CAB C求与 面所 成 的 角题型二:线面角题型二:线面角正

    6、方体正方体ABCD1A1B1C1D11题型三:二面角题型三:二面角二面角的范围:0,1n2n 2n 1ncos12|cos,|n n cos12|cos,|n n ABO关键:观察二面角的范围关键:观察二面角的范围12题型三:二面角题型三:二面角,1,1,2.AABCD SAABBCADSCDSBA0例三如所示,ABC D 是一直角梯形,ABC=90S平面求面与面所成二面角的余弦值ABCDS13,1,1,2.AABCD SAABBCADSCDSBA0例三如所示,ABCD 是一直角梯形,ABC=90S平面求面与面所成二面角的余弦值ABCDSxyz解:建立空直角坐系A-xyz如所示,A(0,0,0),11(1,0),(0,1)22CDSD C(-1,1,0),1,0),2D(0,(0,0,1)S11(0,0)2SBAnAD易知面的法向量14设平面2(,),SCDnx y z 的法向量22,nCD nSD 由得:0202yxyz22yxyz2(1,2,1)n 任取1212126cos,3|n nn nnn 63即所求二面角得余弦值是15小结:小结:1.异面直线所成角:coscos,CD AB|2.直线与平面所成角:sincos,n AB|3.二面角:cos12|cos,|n n 关键:观察二面角的范围ABCD1DABOn1n2n cos12|cos,|n n

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学:32《空间向量在立体几何中的应用》课件-人教版选修2-1.ppt
    链接地址:https://www.163wenku.com/p-4673841.html
    晟晟文业
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库