离散数学屈婉玲第三章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《离散数学屈婉玲第三章课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 屈婉玲 第三 课件
- 资源描述:
-
1、主要内容主要内容推理的形式结构推理的形式结构l 推理的正确与错误推理的正确与错误l 推理的形式结构推理的形式结构l 判断推理正确的方法判断推理正确的方法l 推理定律推理定律自然推理系统自然推理系统Pl 形式系统的定义与分类形式系统的定义与分类l 自然推理系统自然推理系统Pl 在在P中构造证明中构造证明:直接证明法、附加前提证明法、归谬法直接证明法、附加前提证明法、归谬法第三章第三章 命题逻辑的推理理论命题逻辑的推理理论3.1 3.1 推理的形式结构推理的形式结构定义定义3.1 设设A1,A2,Ak,B为命题公式为命题公式.若对于每一组赋值,若对于每一组赋值,A1 A2 Ak 为假,或当为假,或
2、当A1 A2 Ak为真时,为真时,B也为真,也为真,则称由则称由前提前提A1,A2,Ak推出推出结论结论B的的推理推理是是有效的有效的或或正确正确的的,并称并称B是是有效结论有效结论.定理定理3.1 由命题公式由命题公式A1,A2,Ak 推出推出B的推理正确当且仅当的推理正确当且仅当A1 A2 AkB为重言式为重言式注意注意:推理正确不能保证结论一定正确推理正确不能保证结论一定正确推理的形式结构推理的形式结构2.2.A1 A2 AkB 若推理正确若推理正确,记为记为A1 A2 Ak B3.前提:前提:A1,A2,Ak 结论:结论:B判断推理是否正确的方法判断推理是否正确的方法:真值表法真值表法
3、 等值演算法等值演算法 主析取范式法主析取范式法推理的形式结构推理的形式结构1.A1,A2,Ak B 若推理正确若推理正确,记为记为A1,A2,An B推理实例推理实例例例1 判断下面推理是否正确判断下面推理是否正确(1)若今天是若今天是1号号,则明天是则明天是5号号.今天是今天是1号号.所以所以,明天是明天是5号号.(2)若今天是若今天是1号号,则明天是则明天是5号号.明天是明天是5号号.所以所以,今天是今天是1号号.解解 设设 p:今天是:今天是1号,号,q:明天是:明天是5号号.(1)推理的形式结构推理的形式结构:(pq)pq用等值演算法用等值演算法 (pq)pq (p q)p)q pq
4、 q 1推理正确推理正确推理实例推理实例(2)(2)推理的形式结构推理的形式结构:(pq)qp 用主析取范式法用主析取范式法 (pq)qp (p q)qp (p q)q)p q p (pq)(pq)(pq)(p q)m0 m2 m3 推理不正确推理不正确推理定律推理定律重言蕴涵式重言蕴涵式1.1.A (A B)附加律附加律 2.(A B)A 化简律化简律3.(AB)A B 假言推理假言推理4.(AB)B A 拒取式拒取式 5.(A B)B A 析取三段论析取三段论6.(AB)(BC)(AC)假言三段论假言三段论7.(AB)(BC)(AC)等价三段论等价三段论8.(AB)(CD)(A C)(B
5、D)构造性二难构造性二难 (AB)(AB)B 构造性二难构造性二难(特殊形式特殊形式)9.(AB)(CD)(BD)(AC)破坏性二难破坏性二难每个等值式可产生两个推理定律每个等值式可产生两个推理定律如如,由由AA可产生可产生 AA 和和 AA3.2 3.2 自然推理系统自然推理系统P定义定义3.2 一个一个形式系统形式系统 I 由下面四个部分组成:由下面四个部分组成:(1)非空的字母表,记作非空的字母表,记作 A(I).(2)A(I)中符号构造的合式公式集,记作中符号构造的合式公式集,记作 E(I).(3)E(I)中一些特殊的公式组成的公理集,记作中一些特殊的公式组成的公理集,记作 AX(I)
6、.(4)推理规则集,记作推理规则集,记作 R(I).记记I=,其中其中是是 I 的的形式语言形式语言系统系统,是是 I 的的形式演算系统形式演算系统.自然推理系统自然推理系统:无公理集无公理集,即即AX(I)=公理推理系统公理推理系统 有公理集有公理集,推出的结论是系统中的重言式推出的结论是系统中的重言式,称称 作作定理定理自然推理系统自然推理系统P定义定义3.3 自然推理系统自然推理系统 P 定义定义如下如下:1.字母表字母表 (1)命题变项符号:命题变项符号:p,q,r,pi,qi,ri,(2)联结词符号:联结词符号:,(3)括号与逗号:括号与逗号:(,),,2.合式公式(同定义合式公式(
7、同定义1.6)3.推理规则推理规则 (1)前提引入规则前提引入规则 (2)结论引入规则结论引入规则 (3)置换规则置换规则推理规则推理规则(4)(4)假言推理规则假言推理规则(6)化简规则化简规则 (8)假言三段论规则假言三段论规则 AB AB AA B A B A(5)(5)附加规则附加规则(7)拒取式规则拒取式规则 (9)析取三段论规则析取三段论规则 AB B A AB BCACA B BA推理规则推理规则(10)(10)构造性二难推理规则构造性二难推理规则 (11)破坏性二难推理规则破坏性二难推理规则 (12)合取引入规则合取引入规则 AB CD A C B D AB CD BD A C
8、 A BA C在自然推理系统在自然推理系统P中构造证明中构造证明设前提设前提A1,A2,Ak,结论结论B及公式序列及公式序列C1,C2,Cl.如果每如果每一个一个Ci(1 i l)是某个是某个Aj,或者可由序列中前面的公式应用推理或者可由序列中前面的公式应用推理规则得到规则得到,并且并且Cl=B,则称这个公式序列是由则称这个公式序列是由A1,A2,Ak推推出出B的的证明证明例例2 构造下面推理的证明:构造下面推理的证明:若明天是星期一或星期三若明天是星期一或星期三,我明天就有课我明天就有课.若我明天有课若我明天有课,今天必备课今天必备课.我今天没备课我今天没备课.所以所以,明天不是星期一明天不
展开阅读全文