书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型演示垂径定理课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4673282
  • 上传时间:2022-12-31
  • 格式:PPT
  • 页数:31
  • 大小:360.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《演示垂径定理课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    演示 定理 课件
    资源描述:

    1、赵州石拱桥 1300 1300多年前多年前,我国隋朝建造的赵州石拱桥我国隋朝建造的赵州石拱桥(如图如图)的桥拱是的桥拱是圆弧形圆弧形,它的它的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,37.4m,拱高拱高(弧的中弧的中点到弦的距离点到弦的距离,也叫弓形高也叫弓形高)为为7.2m,7.2m,求桥拱的半径求桥拱的半径(精确到精确到0.1m).0.1m).1垂直于弦的直径垂直于弦的直径 (垂径定理)(垂径定理).2 实践探究实践探究把一个圆沿着它的任意一条直径对折,重把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什复几次,你发现了什么?由此你能得到什么结论?么结

    2、论?判断:任意一条直径都是圆的对称轴(判断:任意一条直径都是圆的对称轴()X.3如图,如图,AB是是 O的一条弦,做直径的一条弦,做直径CD,使,使CDAB,垂足为,垂足为E(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?)这个图形是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有哪些相等的线段和弧?为什么?)你能发现图中有哪些相等的线段和弧?为什么?OABCDE思考思考(1)是轴对称图形直径)是轴对称图形直径CD所在的所在的直线是它的对称轴直线是它的对称轴(2)线段:线段:AE=BE弧:,弧:,.4CAEBO.D总结:总结:垂径定理:垂径定理:垂直于弦的直径平分弦,垂直于

    3、弦的直径平分弦,并且平分弦对的两条弧。并且平分弦对的两条弧。CD为为 O的直径的直径CDAB 条件条件结论结论.5应用垂径定理的书写步骤l定理定理 垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所对的两条弧并且平分弦所对的两条弧.OABCDMCDAB,CD是直径是直径,AM=BM,AC=BC,AD =BD.6引申定理引申定理l定理中的定理中的径径可以是可以是直径、半径、弦心距等过直径、半径、弦心距等过圆心的直线或线段圆心的直线或线段。从而得到垂径定理的变。从而得到垂径定理的变式:式:l一条直线具有:一条直线具有:平分弦平分弦 经过圆心经过圆心垂直于弦垂直于弦可推得可推得 平分弦所对的劣平

    4、分弦所对的劣(优)弧(优)弧.7E EO OA AB BD DC CE EA AB BC CD DE EO OA AB BD DC CE EO OA AB BC CE EO OC CD DA AB B 练习练习1O OB BA AE ED在下列图形,符合垂径定理的条件吗?在下列图形,符合垂径定理的条件吗?O O.8EDCOABOBCADDOBCAOBACDOBAC.9判断下列图形,能否使用垂径定理?判断下列图形,能否使用垂径定理?OCDBAOCDBAOCDBAOCDE注意:定理中的两个条件注意:定理中的两个条件(直径,垂直于弦)(直径,垂直于弦)缺一缺一不可!不可!.10ABCDEABDC条件

    5、条件CDCD为直径为直径结论结论AC=BCAD=BDCDABCDABCDABCDABAE=BE平分弦平分弦 的直径垂直于弦,并且平分的直径垂直于弦,并且平分弦所对的两条弧弦所对的两条弧(不是直径不是直径)垂径定理的推论垂径定理的推论1:1:CDABCDAB吗?吗?(E)(E).11“知二推三知二推三”(1)垂直于弦垂直于弦 (2)过圆心过圆心 (3)平分弦平分弦 (4)平分弦所对的优弧平分弦所对的优弧 (5)平分弦所对的劣弧平分弦所对的劣弧注意注意:当具备了当具备了(1)(3)(1)(3)时时,应对另一应对另一 条弦增加条弦增加”不是直径不是直径”的限制的限制.12n你可以写出相应的命题吗你可

    6、以写出相应的命题吗?n相信自己是最棒的相信自己是最棒的!垂径定理的推论 l如图如图,在下列五个条件中在下列五个条件中:只要具备其中两个条件只要具备其中两个条件,就可推出其余三个结论就可推出其余三个结论.OABCDM CD是直径是直径,AM=BM,CDAB,AC=BC,AD=BD.13垂径定理及推论OABCDM垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所的两条弧并且平分弦所的两条弧.平分弦平分弦(不是直径不是直径)的直径垂直于弦的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂直平分弦垂直平分弦,并且平分弦所对的并且平分

    7、弦所对的另一条弧另一条弧.弦的垂直平分线经过圆心弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平并且平分弦和所对的另一条弧分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦垂直于弦,并且平分弦所对的另一条弧并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心平分弦所对的两条弧的直线经过圆心,并且垂直平分弦并且垂直平分弦.14一、判断是非:一、判断是非:(1)平分弦的直径,平分这条弦所对的弧。)平分弦

    8、的直径,平分这条弦所对的弧。(2)平分弦的直线,必定过圆心。)平分弦的直线,必定过圆心。(3)一条直线平分弦(这条弦不是直径),)一条直线平分弦(这条弦不是直径),那么这那么这 条直线垂直这条弦。条直线垂直这条弦。ABCDO(1)ABCDO(2)ABCDO(3).15(4)弦的垂直平分线一定是圆的直径。弦的垂直平分线一定是圆的直径。(5)平分弧的直线,平分这条弧所对的)平分弧的直线,平分这条弧所对的 弦。弦。(6)弦垂直于直径,这条直径就被弦平分。)弦垂直于直径,这条直径就被弦平分。ABCO(4)ABCDO(5)ABCDO(6)E(7)平分弦的直径垂直于弦)平分弦的直径垂直于弦.16弦心距弦心

    9、距:过一个圆的圆心作弦的垂线:过一个圆的圆心作弦的垂线,圆心与垂足之间圆心与垂足之间的距离叫做弦心距的距离叫做弦心距2OBAC如图:圆O中,AB是圆O中的一条弦,其中OCAB圆心到弦的距离用d表示,半径用r表示,弦长用a表示,则d,r,a之间满足什么样的关系呢?2222adr.17cm32cm32 8cm1 1半径半径为为4cm4cm的的OO中,弦中,弦AB=4cmAB=4cm,那么圆心那么圆心O O到弦到弦ABAB的距离是的距离是 。2 2OO的的直径直径为为10cm10cm,圆心,圆心O O到弦到弦ABAB的的 距离为距离为3cm3cm,则弦,则弦ABAB的长是的长是 。3 3半径半径为为

    10、2cm2cm的圆中,过半径中点且的圆中,过半径中点且 垂直于这条半径的弦长是垂直于这条半径的弦长是 。练习练习 1A AB BO OE EA AB BO OE EO OA AB BE E垂径定理的应用垂径定理的应用.181.1.如图如图,在在OO中中,弦弦ABAB的长为的长为8cm,8cm,圆心到圆心到ABAB的距离为的距离为3cm,3cm,则则OO的半径为的半径为 .练习练习 2:ABOC5cm342.2.弓形的弦长弓形的弦长ABAB为为24cm24cm,弓形的高,弓形的高CDCD为为8cm8cm,则这弓形所在圆的半径为,则这弓形所在圆的半径为.13cm D C A B O(1)(1)题题(

    11、2)(2)题题128.19方法归纳方法归纳:解决有关弦的问题时,经常解决有关弦的问题时,经常连接半径连接半径;过圆心作一条与弦垂直的线段过圆心作一条与弦垂直的线段等辅助线,为等辅助线,为应用垂径定理创造条件。应用垂径定理创造条件。垂径定理经常和勾股定理结合使用。垂径定理经常和勾股定理结合使用。E.ACDBO.ABO.20l3、如图,、如图,P为为 O的弦的弦BA延长线上一点,延长线上一点,PAAB2,PO5,求,求 O的半径。的半径。关于弦的问题,常常需关于弦的问题,常常需要要过圆心作弦心距过圆心作弦心距,这,这是一条非常重要的是一条非常重要的辅助辅助线线。弦心距、半径、半弦长弦心距、半径、半

    12、弦长构成构成直角三角形直角三角形,便将,便将问题转化为直角三角形问题转化为直角三角形的问题。的问题。MAPBOA.21解:如图,设半径为解:如图,设半径为R,ABAD21,7.184.3721DCOCOD.2.7 R在在tAODtAOD中,中,由勾股定理,得由勾股定理,得,222ODADOA.)2.7(7.18222RR即解得解得 R27.9(m).答:赵州桥的主桥拱半径约为答:赵州桥的主桥拱半径约为27.9m.OABCD37.47.2赵州桥主桥拱的赵州桥主桥拱的跨度跨度(弧所对的弦的长弧所对的弦的长)为为37.4m,拱高拱高(弧的中点到弦的距离弧的中点到弦的距离)为为7.2m,你能求出赵州桥

    13、,你能求出赵州桥主桥拱的半径吗?主桥拱的半径吗?AB=37.4,CD=7.2R R18.7R-7.2R-7.2再逛赵州石拱桥再逛赵州石拱桥.221如图,在如图,在 O中,弦中,弦AB的长为的长为8cm,圆心,圆心O到到AB的距离为的距离为3cm,求,求 O的半径的半径OABE练习练习解:解:OEAB222AOOEAE2222=3+4=5cmAOOEAE答:答:O的半径为的半径为5cm.活活 动动 三三118422AEAB 在RtAOE中.23变式:变式:图中两圆为同心圆图中两圆为同心圆变式变式3:隐去(变式:隐去(变式1)中的大圆,得)中的大圆,得右图连接右图连接OA,OB,设,设OA=OB,

    14、AC、BD有什么关系?为什么?有什么关系?为什么?D C O A B变式变式4:隐去(变式:隐去(变式1)中的大)中的大圆,得右图,连接圆,得右图,连接OC,OD,设,设OC=OD,AC、BD有什么关系?有什么关系?为什么?为什么?D C O A B变式变式1 1:ACAC与与BDBD有什么关系?有什么关系?D C O A B变式变式2 2:ACBD依然成立吗依然成立吗 N M D C O A B.242如图,在如图,在 O中,中,AB、AC为互相垂直且相等的为互相垂直且相等的两条弦,两条弦,ODAB于于D,OEAC于于E,求证四边形,求证四边形ADOE是正方形是正方形DOABCE证明:证明:

    15、OEAC ODAB ABAC90 90 90OEAEADODA四边形四边形ADOE为矩形,为矩形,又又AC=AB11 22AEACADAB,AE=AD 四边形四边形ADOE为正方形为正方形.OEAC ODAB.25E已知:如图,在以已知:如图,在以O为圆为圆心的两个同心圆中,大圆的心的两个同心圆中,大圆的弦弦AB交小圆于交小圆于C,D两点。两点。求证:求证:ACBD。.ACDBO图图.262 5cm已知已知P为为 O内一点内一点,且且OP=2cm,如果如果 O的半径是的半径是3cm,那么过那么过P点的最短的弦等于点的最短的弦等于_.27小小 结结直径平分弦直径平分弦 直径垂直于弦直径垂直于弦=

    16、直径平分弦所对的弧直径平分弦所对的弧 直径垂直于弦直径垂直于弦 直径平分弦(不是直径)直径平分弦(不是直径)直径平分弦所对的弧直径平分弦所对的弧 直径平分弧所对的弦直径平分弧所对的弦 直径平分弧直径平分弧 直径垂直于弧所对的弦直径垂直于弧所对的弦=、圆的轴对称性、圆的轴对称性、垂径定理及其推论的图式.28E小结小结:解决有关弦的问题,经常是解决有关弦的问题,经常是过圆心作弦的垂线过圆心作弦的垂线,或,或作垂直于弦的直径作垂直于弦的直径,连结半径连结半径等辅助线,为应用垂径定等辅助线,为应用垂径定理创造条件。理创造条件。.CDABOMNE.ACDBO.ABO.29别忘记还有我哟!别忘记还有我哟!

    17、1、教材、教材88页习题页习题24.1 第第8题;题;2、教辅书、教辅书48-51页页作业:作业:.301.1.过过oo内一点内一点M M的最长的弦长为的最长的弦长为1010,最短弦长为最短弦长为8 8,那么那么oo的半径是的半径是2.2.已知已知oo的弦的弦AB=6AB=6,直径直径CD=10CD=10,且且ABCD,ABCD,那那么么C C到到ABAB的距离等于的距离等于3.3.已知已知OO的弦的弦AB=4AB=4,圆心圆心O O到到ABAB的中点的中点C C的距离为的距离为1 1,那么那么OO的半径为的半径为4.4.如图如图,在在OO中弦中弦ABAC,ABAC,OMAB,ONAC,OMAB,ONAC,垂足分别为垂足分别为M,M,N,N,且且OM=2,0N=3,OM=2,0N=3,则则AB=,AB=,AC=,OA=AC=,OA=BAMCON51或或956413Cm.31

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:演示垂径定理课件.ppt
    链接地址:https://www.163wenku.com/p-4673282.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库