书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型D99二元泰勒公式课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4671404
  • 上传时间:2022-12-31
  • 格式:PPT
  • 页数:16
  • 大小:201.68KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《D99二元泰勒公式课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    D99 二元 泰勒 公式 课件
    资源描述:

    1、目录 上页 下页 返回 结束*第九节一、二元函数泰勒公式一、二元函数泰勒公式 二、极值充分条件的证明二、极值充分条件的证明 二元函数的泰勒公式 第九章 目录 上页 下页 返回 结束 一、二元函数的泰勒公式一、二元函数的泰勒公式一元函数)(xf的泰勒公式:20000!2)()()()(hxfhxfxfhxfnnhnxf!)(0)(10)1(!)1()(nnhnxxf)10(推广多元函数泰勒公式 目录 上页 下页 返回 结束 记号记号(设下面涉及的偏导数连续):),()(00yxfykxh),()(002yxfykxh),()(00yxfykxhm),(),(0000yxfkyxfhyx表示),(

    2、),(2),(00200002yxfkyxfkhyxfhyyyxxx),(C000yxyxfkhpmpmpmpmppm 一般地,表示表示目录 上页 下页 返回 结束 定理定理1 1.),(),(00yxyxfz在点设的某一邻域内有直到 n+1 阶连续偏导数,),(00kyhx为此邻域内任 一点,则有),(),(0000yxfkyhxf),()(00yxfkhyx),()(002!21yxfkhyx),()(00!1yxfkhnyxn),()(001!)1(1kyhxfkhRnyxnn)10(nR其中 称为f 在点(x0,y0)的 n 阶泰勒公式阶泰勒公式,称为其拉格拉格朗日型余项朗日型余项.目

    3、录 上页 下页 返回 结束 证证:令),10(),()(00tktyhtxft则),()1(,),()0(0000kyhxfyxf利用多元复合函数求导法则可得:),(),()(0000t kyt hxfkt kyt hxfhtyx),()()0(00yxfkhyx),()(002t kyt hxfhtxx),(200t kyt hxfkhyx),(002t kyt hxfkyy),()()0(002yxfkhyx 目录 上页 下页 返回 结束),(C)(000)(t kyt hxyxfkhtpmpmpmpmppmm一般地,),()()0(00)(yxfkhmyxm由)(t的麦克劳林公式,得)1

    4、()()1(!)1(1nn)10(将前述导数公式代入即得二元函数泰勒公式.)0()0()0()0()(!1!21nn 目录 上页 下页 返回 结束),()(001!)1(1kyhxfkhRnyxnn说明说明:(1)余项估计式.因 f 的各 n+1 阶偏导数连续,在某闭邻域其绝对值必有上界 M,22kh 令则有1)(!)1(nnkhnMRsincoskh11)sincos(!)1(nnnM)1(max2 1,0 xx利用11)2(!)1(nnnM)(no2目录 上页 下页 返回 结束(2)当 n=0 时,得二元函数的拉格朗日中值公式:),(),(0000yxfkyhxf),(00kyhxfhx)

    5、,(00kyhxfky)10(3)若函数),(yxfz 在区域D 上的两个一阶偏导数恒为零,.),(常数yxf由中值公式可知在该区域上 定理1目录 上页 下页 返回 结束 例例1.求函数)0,0()1ln(),(在点yxyxf解解:yxyxfyxfyx11),(),(的三阶泰勒公式.2)1(1),(),(),(yxyxfyxfyxfyyyxxx333)1(!2yxyxfpp)3,2,1,0(p444)1(!3yxyxfpp)4,3,2,1,0(p因此,)0,0()(fkhyx)0,0()0,0(yxfkfhkh目录 上页 下页 返回 结束)0,0()(2fkhyx)0,0()(3fkhyx)0

    6、,0()0,0(2)0,0(22yyyxxxfkfkhfh)0,0(C333303ppppppyxfkh2)(kh3)(2kh,0)0,0(f又代入三阶泰勒公式得将ykxh,)1ln(yxyx 2)(21yx 33)(31Ryx3)1(!2yx),(),(0000yxfkyhxf),()(00yxfkhyx),()(002!21yxfkhyx),()(003!31yxfkhyx3R其中),()(43khfkhRyx44)1()(41yxyxykxh)10(目录 上页 下页 返回 结束 时,具有极值二、极值充分条件的证明二、极值充分条件的证明 的某邻域内具有一阶和二阶连续偏导数,且令则:1)当A

    7、 0 时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数的在点),(),(00yxyxfz 0),(,0),(0000yxfyxfyx),(,),(,),(000000yxfCyxfByxfAyyyxxx02 BAC02 BAC02 BAC定理定理2(充分条件)目录 上页 下页 返回 结束 证证:由二元函数的泰勒公式,并注意0),(,0),(0000yxfyxfyx则有),(),(0000yxfkyhxfz20021),(hkyhxfxxkhkyhxfyx),(200),(200kkyhxfyy,),(),(00连续的二阶偏导数在点由于yxyxf所以Akyhxfxx),(0

    8、0Bkyhxfyx),(00Ckyhxfyy),(0000,0时kh00目录 上页 下页 返回 结束 22221kCkhBhA其中其中,是当h 0,k 0 时的无穷小量,于是z),(21khQ)(22kh,很小时因此当kh.),(确定的正负号可由khQz(1)当 ACB2 0 时,必有 A0,且 A 与C 同号,)()2(),(2222221kBACkBkhBAhAkhQA)()(2221kBACkBhAA可见,0),(,0khQA时当从而z0,因此),(yxf;),(00有极小值在点yx)(2o22221kkhh目录 上页 下页 返回 结束)()(),(2221kBACkBhAkhQA,0)

    9、,(,0khQA时当从而 z0,在点因此),(yxf;),(00有极大值yx(2)当 ACB2 0 时,若A,C不全为零,无妨设 A0,则)(),(221kkBhAkhQA)(2BAC),(0)()(),(0000yxyyBxxAyx接近沿直线当时,有,0kBhAAkhQ与故),(异号;),(yx当,),(0000时接近沿直线yxyy,0k有AkhQ与故),(同号.可见 z 在(x0,y0)邻近有正有负,在点因此),(yxf;),(00无极值yx),(00yxxyO目录 上页 下页 返回 结束+若 AC 0,则必有 B0,不妨设 B0,此时 222),(kCkhBhAkhQ),(00kyhx对点,同号时当kh,0),(khQ,异号时当kh,0),(khQ可见 z 在(x0,y0)邻近有正有负,在点因此),(yxf;),(00无极值yxkhB2,0z从而,0z从而(3)当ACB2 0 时,若 A0,则21)(),(kBhAkhQA若 A0,则 B0,2),(kCkhQ可能),(khQ为零或非零xy),(00yxO目录 上页 下页 返回 结束 此时)(),(221okhQz因此 作业作业P123 1,3,4,5第十节 ,)(,0),(2确定的正负号由时因为ozkhQ不能断定(x0,y0)是否为极值点.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:D99二元泰勒公式课件.ppt
    链接地址:https://www.163wenku.com/p-4671404.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库