人教B版必修四数学课件:2.1.1 向量的概念.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教B版必修四数学课件:2.1.1 向量的概念.ppt》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教B版必修四数学课件:2.1.1 向量的概念 人教 必修 数学 课件 2.1 向量 概念 下载 _人教B版_数学_高中
- 资源描述:
-
1、 2.1.1 向量的概念向量的概念 课件(人教课件(人教B版版 必修必修4) 2.1 向量的线性运算向量的线性运算 2.1.1 向量的概念向量的概念 课堂互动讲练课堂互动讲练 知能优化训练知能优化训练 2.1.1 课前自主学案课前自主学案 学习目标学习目标 学习目标学习目标 1.了解向量的实际背景了解向量的实际背景 2理解向量的相关概念和向量的几何表示理解向量的相关概念和向量的几何表示 3理解相等向量理解相等向量、共线共线(平行平行)向量的含义向量的含义,并并 会判断向量间平行会判断向量间平行(共线共线)、相等的关系相等的关系 课前自主学案课前自主学案 温故夯基温故夯基 1力的三要素:力的三要
2、素:_、_、 _ 2位移位移、速度速度_大小和方向大小和方向,_特定特定 位置位置 大小大小 方向方向 作用点作用点 有有 无无 1向量的定义向量的定义 具有具有_和和_的量称为向量的量称为向量. 知新益能知新益能 大小大小 方向方向 2向量的表示方法向量的表示方法 方向方向 始点始点 终点终点 同向且等长同向且等长 向量向量AB a 、 、b 、 、c 思考感悟思考感悟 1.向量与有向线段有什么区别向量与有向线段有什么区别? 提示:提示:(1)向量只有大小和方向两个要素向量只有大小和方向两个要素,与起与起 点无关点无关,只要大小和方向相同只要大小和方向相同,则这两个向量则这两个向量 就是相同
3、的向量;就是相同的向量; (2)有向线段有起点有向线段有起点、大小和方向三个要素大小和方向三个要素,起起 点不同点不同,即使大小即使大小、方向相同方向相同,也是不同的有也是不同的有 向线段向线段 3向量的长度向量的长度(模模) 如果如果AB a,那么,那么AB 的的_表示向量表示向量 a 的大小,的大小, 也叫做也叫做 a 的长的长(或模或模),记作,记作|a|. 4与向量有关的概念与向量有关的概念 (1)零向量:零向量:_的向量,记作的向量,记作 0. (2)向量共线或平行向量共线或平行 基线:通过基线:通过_,叫做向量,叫做向量AB 的基线如的基线如 果向量的基线果向量的基线_,则称这些向
4、量共线或,则称这些向量共线或 平行,共线向量的方向平行,共线向量的方向_向量向量 a 平行于平行于 b, 记作记作_. (3)相等向量:两个向量相等向量:两个向量 a 和和 b_,即,即 a 和和 b 相等,记作相等,记作 ab. 长度长度 长度等于长度等于0 有向线段有向线段AB 的直线的直线 互相平行或重合互相平行或重合 同向且等长同向且等长 相同或相反相同或相反 ab 2把有向线段把有向线段AB 向右平移向右平移 1 个单位,向上平移个单位,向上平移 2 个单位,得到有向线段个单位,得到有向线段AB ,则,则AB 与与AB 表表 示的向量一样吗?示的向量一样吗? 思考感悟思考感悟 提示:
5、提示:平移前的有向线段与平移后的有向线段在平移前的有向线段与平移后的有向线段在 长度和方向上都没发生改变,也就是说它们的大长度和方向上都没发生改变,也就是说它们的大 小和方向相同,所以它们表示的向量一样小和方向相同,所以它们表示的向量一样 3向量向量AB 与向量与向量CD 是共线向量,则是共线向量,则 A、B、C、D 必在同一条直线上,正确吗?必在同一条直线上,正确吗? 提示:提示:不正确不正确共线向量还可以指表示向量的有共线向量还可以指表示向量的有 向线段所在的直线平行向线段所在的直线平行,故故A、B、C、D不一定不一定 共线共线 5位置向量位置向量 任给一定点任给一定点 O 和向量和向量
6、a,过点,过点 O 作有向线段作有向线段OA a,则点,则点 A 相对于点相对于点 O 的位置被向量的位置被向量 a 所所 _, 这时向量, 这时向量OA 叫做点叫做点 A 相对于点相对于点 O 的位置向量的位置向量 唯一确定唯一确定 课堂互动讲练课堂互动讲练 考点突破考点突破 向量的概念向量的概念 数学中研究的向量是自由向量数学中研究的向量是自由向量,即向量的长即向量的长 度与方向与起点的位置无关度与方向与起点的位置无关,所以要严格区所以要严格区 分平行向量与平行线分平行向量与平行线,共线向量与多点共线共线向量与多点共线, 两者不能混为一谈两者不能混为一谈 下列关于向量的说法正确的个数是下列
7、关于向量的说法正确的个数是 ( ) 起点相同起点相同,方向相同的两个非零向量的终方向相同的两个非零向量的终 点相同;点相同;起点相同起点相同,相等的两个非零向量相等的两个非零向量 的终点相同;的终点相同;两个平行的非零向量的方向两个平行的非零向量的方向 相同;相同;两个共线的非零向量的起点与终点两个共线的非零向量的起点与终点 一定共线一定共线 A3 B2 C1 D0 例例1 【思路点拨思路点拨】 解答本题应根据向量的有关概念解答本题应根据向量的有关概念, 注意向量的大小与方向两个要素注意向量的大小与方向两个要素 【解析解析】 起点相同起点相同,方向相同的两个非零向量方向相同的两个非零向量 若长
8、度不相等若长度不相等,则终点不相同则终点不相同,故故不正确;起不正确;起 点相同点相同,相等的两个非零向量的终点相同相等的两个非零向量的终点相同,故故 正确;两个平行的非零向量的方向相同或相反正确;两个平行的非零向量的方向相同或相反, 故故不正确;两个共线的非零向量的起点与终点不正确;两个共线的非零向量的起点与终点 不一定共线不一定共线,所对应的直线可能平行所对应的直线可能平行,故故不正不正 确确 【答案答案】 C 【点评点评】 对于概念性题目对于概念性题目,关键把握好概念的关键把握好概念的 内涵与外延内涵与外延,正确理解向量共线正确理解向量共线,向量相等的概向量相等的概 念念,清楚它们的区别
展开阅读全文