平面向量的基本定理及向量坐标运算课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《平面向量的基本定理及向量坐标运算课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 基本 定理 坐标 运算 课件
- 资源描述:
-
1、第二节平面向量的基本定理及向量坐标运算(全国卷5年4考)【知识梳理【知识梳理】1.1.平面向量基本定理平面向量基本定理(1)(1)定理定理:如果如果e1 1,e2 2是同一平面内的两个是同一平面内的两个_向量向量,那么对于这一平面内的任意向量那么对于这一平面内的任意向量a,有且只有一对实数有且只有一对实数1 1,2 2,使使a=_.a=_.不共线不共线1 1e1 1+2 2e2 2(2)(2)基底基底:_:_的向量的向量e1 1,e2 2叫做表示这一平面内所有叫做表示这一平面内所有向量的一组基底向量的一组基底.不共线不共线2.2.平面向量的坐标表示平面向量的坐标表示(1)(1)在平面直角坐标系
2、中在平面直角坐标系中,分别取与分别取与x x轴、轴、y y轴方向相同轴方向相同的两个单位向量的两个单位向量i,ji,j作为基底作为基底,对于平面内的一个向量对于平面内的一个向量a,由平面向量基本定理知由平面向量基本定理知,有且只有一对实数有且只有一对实数x,yx,y,使得使得a=xi+yj=xi+yj,这样这样,平面内的任一向量平面内的任一向量a都可由都可由_唯一确定唯一确定,x,yx,y因此把有序数对因此把有序数对_叫做向量叫做向量a的坐标的坐标,记作记作a=(x,y=(x,y),),其中其中x x叫做叫做a在在x x轴上的坐标轴上的坐标,y,y叫做叫做a在在y y轴上的坐标轴上的坐标.(2
3、)(2)若若A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2),),则则 =_.=_.AB(x,y(x,y)(x(x2 2-x-x1 1,y,y2 2-y-y1 1)3.3.平面向量的坐标运算平面向量的坐标运算(1)(1)若若a=(x=(x1 1,y,y1 1),),b=(x=(x2 2,y,y2 2),),则则ab=(x=(x1 1x x2 2,y,y1 1y y2 2).).(2)(2)若若a=(x,y=(x,y),),则则a=_.=_.(3)(3)设设A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2),),则则|=_.|=_.AB(x,y(
4、x,y)222121xxyy4.4.平面向量共线的坐标表示平面向量共线的坐标表示向量共线的充要条件的坐标表示向量共线的充要条件的坐标表示若若a=(x=(x1 1,y,y1 1),),b=(x=(x2 2,y,y2 2),),则则ab_._.x x1 1y y2 2-x-x2 2y y1 1=0=0【常用结论【常用结论】1.1.向量共线的充要条件有两种向量共线的充要条件有两种:aba=b(b0).).a=(x=(x1 1,y,y1 1),),b=(x=(x2 2,y,y2 2),),则则abx x1 1y y2 2-x-x2 2y y1 1=0.=0.2.2.两向量相等的充要条件两向量相等的充要
5、条件:它们的对应坐标相等它们的对应坐标相等.3.3.注意向量坐标与点的坐标的区别注意向量坐标与点的坐标的区别:(1)(1)向量与坐标之间是用等号连接向量与坐标之间是用等号连接.(2)(2)点的坐标点的坐标,是在表示点的字母后直接加坐标是在表示点的字母后直接加坐标.(3)(3)是用是用B B点的横纵坐标减去点的横纵坐标减去A A点的横纵坐标点的横纵坐标,既有方既有方向的信息也有大小的信息向的信息也有大小的信息,其向量位置不确定其向量位置不确定.(4)(4)点的坐标含有横坐标和纵坐标点的坐标含有横坐标和纵坐标,点是唯一的点是唯一的.AB【基础自测【基础自测】题组一题组一:走出误区走出误区1.1.判
6、断正误判断正误(正确的打正确的打“”,”,错误的打错误的打“”)”)(1)(1)平面内的任意两个向量都可以作为一组基底平面内的任意两个向量都可以作为一组基底.()(2)(2)同一向量在不同的基底下的表示是相同的同一向量在不同的基底下的表示是相同的.()(3)(3)在在ABCABC中中,设设 =a,=,=b,则则a与与b的夹角为的夹角为ABC.ABC.()(4)(4)若若a,b不共线不共线,且且1 1a+1 1b=2 2a+2 2b,则则1 1=2 2,1 1=2 2.()AB BC【解析【解析】(1)(1).因为一组不共线的向量可以作为一组因为一组不共线的向量可以作为一组基底基底,所以平面内的
7、任意两个向量都可以作为一组基底所以平面内的任意两个向量都可以作为一组基底错误错误.(2)(2).由平面向量基本定理可知由平面向量基本定理可知,平面内的任意向量都平面内的任意向量都可以由一组基向量唯一线性表示可以由一组基向量唯一线性表示,而同一向量在不同的而同一向量在不同的基底下的表示是不同的基底下的表示是不同的.(3)(3).由向量夹角的定义可知由向量夹角的定义可知:a:a与与b b的夹角为的夹角为ABCABC的的补角补角.(4).(4).因为因为1 1a+1 1b=2 2a+2 2b,所以所以(1 1-2 2)a=(=(2 2-1 1)b,当当1 1-2 200时时,a=b,所以所以a与与b
8、共线共线,与与已知已知a,b不共线矛盾不共线矛盾.2112 2.2.若若 =(1,2),=(3,4),=(1,2),=(3,4),则则 =()A.(2,2)A.(2,2)B.(-2,-2)B.(-2,-2)C.(4,6)C.(4,6)D.(-4,-6)D.(-4,-6)AB BC AC【解析【解析】选选C.C.向量加法法则可知向量加法法则可知:=+:=+=(1,2)+(3,4)=(4,6).=(1,2)+(3,4)=(4,6).AC AB BC 3.3.在在ABCABC中中,已知已知M M是是BCBC的中点的中点,设设 =a,=,=b,则则 =_.=_.BA CA AM【解析【解析】在在ABC
9、ABC中中,因为因为M M是是BCBC的中点的中点,由向量加法的由向量加法的平行四边形法则可知平行四边形法则可知:答案答案:-ABACAM2 BACA.22 ab2ab题组二题组二:走进教材走进教材1.(1.(必修四必修四P101AP101A组组T5T5改编改编)已知向量已知向量a=(4,2),=(4,2),b=(x,3),=(x,3),且且ab,则则x x的值是的值是()A.-6A.-6B.6B.6C.9C.9D.12D.12【解析【解析】选选B.B.因为因为ab,所以所以4 43-2x=0,3-2x=0,所以所以x=6.x=6.2.(2.(必修四必修四P101AP101A组组T2T2改编改
10、编)已知三个力已知三个力F1 1=(-2,-1),=(-2,-1),F2 2=(-3,2),(-3,2),F3 3=(4,-3)=(4,-3)同时作用于某物体上一点同时作用于某物体上一点,为使物体为使物体保持平衡保持平衡,现加上一个力现加上一个力F4,则则F4等于等于()A.(-1,-2)A.(-1,-2)B.(1,-2)B.(1,-2)C.(-1,2)C.(-1,2)D.(1,2)D.(1,2)【解析【解析】选选D.D.根据力的平衡原理有根据力的平衡原理有F1 1+F2 2+F3 3+F4 4=0,=0,所所以以F4=-(=-(F1 1+F2 2+F3 3)=(1,2).)=(1,2).3.
11、(3.(必修四必修四P102 T3P102 T3改编改编)设设e1 1,e2 2是不共线的两个向量是不共线的两个向量,且且1 1 e1 1+2 2 e2 2=0,则则1 1+2 2=_.=_.【解析【解析】因为因为e1 1,e2 2是不共线的两个向量是不共线的两个向量,且且1 1 e1 1+2 2 e2 2=0,所以所以1 1=2 2=0,=0,所以所以1 1+2 2=0.=0.答案答案:0 0考点一平面向量的坐标运算考点一平面向量的坐标运算【题组练透【题组练透】1.1.已知平面向量已知平面向量a=(1,1),=(1,1),b=(1,-1),=(1,-1),则向量则向量 a-b=()1232A
12、.(-2,-1)A.(-2,-1)B.(-2,1)B.(-2,1)C.(-1,0)C.(-1,0)D.(-1,2)D.(-1,2)【解析【解析】选选D.D.因为因为a=(1,1),=(1,1),b=(1,-1),=(1,-1),所以所以 a-b=(1,1)-(1,-1)=(-1,2).=(1,1)-(1,-1)=(-1,2).123212321 133(,)(,)2 2222.(20152.(2015全国卷全国卷)已知点已知点A(0,1),B(3,2),A(0,1),B(3,2),向量向量 =(-4,-3),(-4,-3),则向量则向量 =()A.(-7,-4)A.(-7,-4)B.(7,4)
13、B.(7,4)C.(-1,4)C.(-1,4)D.(1,4)D.(1,4)AC BC【解析【解析】选选A.=(3,1),=(-4,-3),=-=A.=(3,1),=(-4,-3),=-=(-4,-3)-(3,1)=(-7,-4).(-4,-3)-(3,1)=(-7,-4).AB AC BC AC AB 3.3.已知已知ABCABC的三个顶点的三个顶点A,B,CA,B,C的坐标分别为的坐标分别为(0,1),(0,1),(,0),(0,-2),O(,0),(0,-2),O为坐标原点为坐标原点,动点动点P P满足满足|=1,|=1,则则|的最小值是的最小值是()A.-1A.-1B.-1B.-1C.+
14、1C.+1D.+1D.+12CPOAOBOP 311113【解析【解析】选选A.A.设设P(cosP(cos,-2+sin),-2+sin),则则 OAOBOP 22cos2sin142 2cos2sin42 3cos()()()42 331.4.4.已知已知A(1,0),B(4,0),C(3,4),OA(1,0),B(4,0),C(3,4),O为坐标原点为坐标原点,且且 =,则则|等于等于_._.OD 1(OAOBCB)2 BD【解析【解析】由由 =,=,知点知点D D是线段是线段ACAC的中点的中点,故故D(2,2),D(2,2),所以所以 =(-2,2),=(-2,2),故故|=|=答案
15、答案:2 2 OD 1(OAOBCB)2 1(OAOC)2 BD BD 22222 2.25.5.已知正已知正ABCABC的边长为的边长为2 ,2 ,平面平面ABCABC内的动点内的动点P,MP,M满满足足|=1,|=1,则则|2 2的最大值是的最大值是_._.3AP PMMC,BM【解析【解析】建立平面直角坐标系如图所示建立平面直角坐标系如图所示,则则B(-,0),C(,0),A(0,3),B(-,0),C(,0),A(0,3),则点则点P P的轨迹方程为的轨迹方程为x x2 2+(y-3)+(y-3)2 2=1.=1.设设P(x,yP(x,y),),M(xM(x0 0,y,y0 0),),
展开阅读全文