多元函数的极值及最值(参考)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《多元函数的极值及最值(参考)课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 函数 极值 参考 课件
- 资源描述:
-
1、多元函数的最值应用多元函数的最值应用一、最值应用问题一、最值应用问题函数 f 在闭域上连续函数 f 在闭域上可达到最值 最值可疑点 驻点边界上的最值点特别特别,当区域内部最值存在,且只有一个只有一个极值点P 时,)(Pf为极小 值)(Pf为最小 值(大大)(大大)依据机动 目录 上页 下页 返回 结束 求最值的一般方法求最值的一般方法:将函数在将函数在D D内的所有驻点处的函数值及在内的所有驻点处的函数值及在D D的边界上的最大值和最小值相互比较,其中最的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值大者即为最大值,最小者即为最小值.与一元函数相类似,我们可以利用函数的
2、与一元函数相类似,我们可以利用函数的极值来求函数的最大值和最小值极值来求函数的最大值和最小值.1 1、多元函数的最值、多元函数的最值解解先先求求函函数数在在D内内的的驻驻点点,xyo6 yxDD如图如图,yxyxyxfz4,2解方程组解方程组 0)4(),(0)4(2),(222yxyxxyxfyxyxxyyxfyx得得区区域域D内内唯唯一一驻驻点点)1,2(,且且4)1,2(f,再再求求),(yxf在在D边边界界上上的的最最值值,在在边边界界0 x和和0 y上上0),(yxf,yxyxyxfz4,2xyo6 yxD在边界在边界6 yx上,即上,即xy 6于于是是)2)(6(),(2 xxyx
3、f,由由 02)6(42 xxxfx,得得4,021 xx,2|64 xxy,64)2,4(f 比较后可知比较后可知4)1,2(f为最大值为最大值,64)2,4(f为最小值为最小值.xyo6 yxDyxyxyxfz4,2,0)1()(2)1(22222 yxyxxyxzx,0)1()(2)1(22222 yxyxyyxzy得驻点得驻点)21,21(和和)21,21(,解解 由由即边界上的值为零即边界上的值为零.,21)21,21(z,21)21,21(z所以最大值为所以最大值为21,最小值为,最小值为21.因为因为01lim22 yxyxyx无条件极值无条件极值:对自变量除了限制在定义域内对自
4、变量除了限制在定义域内外,并无其他条件外,并无其他条件.例3:某工厂生产某种产品需要两种原料A、B.单价分别为 2万元/吨 和 1万元/吨。已知该产品产量Q(单位:吨)与A、B两种原料的投入量 x,y有如下关系:且该产品的出售价为5万元/吨,试确定两种原料A、B 的投入量,使获得利润最大。解:解:设所获得利润为设所获得利润为L,yyxxQ52102022yyxxyxQL24104851002522收入收入成本成本 02420yLy04810 xLx8.4x2.1y有问题的实际意义可知最大值一定存在,又求的唯一有问题的实际意义可知最大值一定存在,又求的唯一驻点。所以函数在驻点处取得最大值。驻点。
5、所以函数在驻点处取得最大值。最大利润为:最大利润为:L(4.8 1.2)=229.6 万元万元yyxxyxQL24104851002522例例3 3.解解:设水箱长,宽分别为 x,y m,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水箱问当长、宽、高各取怎样的尺寸时,才能使用料最省?,m2yx2Ayxyxy2yxx2yxyx22200yx0)(222xxyA0)(222yyxA因此可断定此唯一驻点就是最小值点.即当长、宽均为高为时,水箱所用材料最省.3m)2,2(33323222233机动 目录 上页 下页 返回 结束(无条
6、件极值(无条件极值例例4.有一宽为 24cm 的长方形铁板,把它折起来做成解解:设折起来的边长为 x cm,则断面面积x24一个断面为等腰梯形的水槽,倾角为,Acos2224xx x224(21sin)xsincossin2sin2422xxxx224x积最大.)0,120:(2 xD为问怎样折法才能使断面面机动 目录 上页 下页 返回 结束 cos24xcos22x0)sin(cos222x令xAsin24sin4x0cossin2xA解得:由题意知,最大值在定义域D 内达到,而在域D 内只有一个驻点,故此点即为所求.,0sin0 xsincossin2sin2422xxxA)0,120:(
7、2 xD0cos212xx0)sin(coscos2cos2422xx(cm)8,603x机动 目录 上页 下页 返回 结束 三、条件极值三、条件极值极值问题无条件极值:条 件 极 值:条件极值的求法:方法方法1 代入法代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其它条件限制例如,转化,0),(下在条件yx的极值求函数),(yxfz)(0),(xyyx 中解出从条件)(,(xxfz机动 目录 上页 下页 返回 结束 2 2求条件极值的方法求条件极值的方法(1 1)代入法:代入法:将条件代入函数,化为无条件极将条件代入函数,化为无条件极 值问题来解。值问题
展开阅读全文