书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型多元函数微分学的几何应用课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4650950
  • 上传时间:2022-12-29
  • 格式:PPT
  • 页数:19
  • 大小:380KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《多元函数微分学的几何应用课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    多元 函数 微分学 几何 应用 课件
    资源描述:

    1、第七节第七节 多元函数微分学的几何应用多元函数微分学的几何应用 一、空间曲线的切线与法平面一、空间曲线的切线与法平面 设空间曲线的方程设空间曲线的方程 )1()()()(tzztyytxx(1)(1)式中的三个函数均可导。式中的三个函数均可导。;),(0000ttzyxM 对应于对应于设设.),(0000tttzzyyxxM 对应于对应于MM xzyoMM zzzyyyxxx 000的方程为的方程为割线割线MM xyozt 上式分母同除以上式分母同除以t t t,000zzzyyyxxx ,0,时时即即当当 tMM处的切线方程处的切线方程曲线在曲线在M.)()()(000000tzzztyyy

    2、txxx 切向量:切向量:切线的方向向量称为曲线的切向量。切线的方向向量称为曲线的切向量。法平面:法平面:过切点且与切线垂直的平面。过切点且与切线垂直的平面。)(),(),(000tztytx 0)()()(000000 zztzyytyxxtx1 1、空间曲线方程为、空间曲线方程为 ,)()(xzzxyy,),(000处处在在zyxM;)()(100000 xzzzxyyyxx .0)()()(00000 zzxzyyxyxx法平面方程法平面方程为为 特殊地:特殊地:切线方程切线方程为为 )(),(,1(00tzty 切向量切向量2 2、空间曲线方程为、空间曲线方程为 ,0),(0),(zy

    3、xGzyxF切线切线和和法平面方程法平面方程分别为分别为 ,000000yxyxxzxzzyzyGGFFzzGGFFyyGGFFxx .0)()()(000000 zzGGFFyyGGFFxxGGFFyxyxxzxzzyzy,),(000处处在在zyxM),(000zyxzyxzyxGGGFFFkji 切向量切向量.01,cossin2,cos:30处的切线和法平面方程处的切线和法平面方程在在求曲线求曲线 tezttyuduexttu例例1 1、例例2 2、.42,32 zyxtztytx点的切线平行于平面点的切线平行于平面使在该使在该上的点上的点求曲线求曲线例例3 3、.)1,2,1(2,4

    4、22处的切线及法平面方程处的切线及法平面方程在点在点求曲线求曲线xzxy 例例4 4、.)1,2,1(6,0222处的切线及法平面方程处的切线及法平面方程点点在在求曲线求曲线 zyxzyx二、曲面的切平面与法线二、曲面的切平面与法线 设曲面方程为设曲面方程为 0),(:zyxFnTM,)()()(:tzztyytxx的曲线的曲线通过通过在曲线上任取一条在曲线上任取一条M),(),(),(000tztytx 处的切向量处的切向量曲线在曲线在M0)(),(),(),(tztytxFzyxF所以所以上上恒在恒在因为因为,有有处求导处求导对上式两边在对上式两边在,)(0ttM(*)0)(),()(),

    5、()(),(000000000000 tzzyxFtyzyxFtxzyxFzyx),(),(),(000000000zyxFzyxFzyxFnzyx 记记.0(*)n式即为式即为.,的切平面的切平面个平面称为曲面在点个平面称为曲面在点这这的切线都在同一平面上的切线都在同一平面上的一切曲线在点的一切曲线在点故曲面上通过故曲面上通过垂直垂直处的切线都与同一向量处的切线都与同一向量它们在它们在的任意一条曲线的任意一条曲线由于曲线是曲面上过由于曲线是曲面上过MMMnMM切平面方程切平面方程为为 0)(,()(,()(,(000000000000 zzzyxFyyzyxFxxzyxFzyx法线方程法线方

    6、程为为 ),(),(),(000000000000zyxFzzzyxFyyzyxFxxzyx ),(),(),(000000000zyxFzyxFzyxFnzyx 垂直于曲面上切平面的向量称为曲面的垂直于曲面上切平面的向量称为曲面的法向量法向量。.),(000称为曲面在该点的法线称为曲面在该点的法线而垂直于切平面的直线而垂直于切平面的直线通过通过zyxM处的法向量为处的法向量为曲面在曲面在M特殊地:空间曲面方程为特殊地:空间曲面方程为),(yxfz 曲面在曲面在M处的切平面方程为处的切平面方程为,)(,()(,(0000000zzyyyxfxxyxfyx 曲面在曲面在M处的法线方程为处的法线方

    7、程为.1),(),(0000000 zzyxfyyyxfxxyx,),(),(zyxfzyxF 令令则则)1),(),(0000 yxfyxfnyx参数方程的情形:参数方程的情形:),(),(),(:vuzzvuyyvuxx),(00vuvvvuuuzyxzyxkjin 法向量为法向量为 ,1cos22yxxfff ,1cos22yxyfff .11cos22yxff ),(00yxffxx),(00yxffyy 其中其中为为可得法向量的方向余弦可得法向量的方向余弦角为锐角时角为锐角时轴正向所成轴正向所成即与即与当法向量的方向向上当法向量的方向向上,z例例5 5、.)0,2,1(32切平面及法

    8、线方程切平面及法线方程处的处的在点在点求曲面求曲面 xyezz例例6 6、.)4,1,2(122切平面及法线方程切平面及法线方程处的处的在点在点求曲面求曲面 yxz例例7 7、.0642132222的各切平面方程的各切平面方程平行于平面平行于平面求曲面求曲面 zyxzyx例例8 8、.)22,21,21(cossinsincossin处的切平面及法线方程处的切平面及法线方程在点在点求曲面求曲面Mzyx 例例9 9、.:截距之和为常数截距之和为常数切平面在各坐标轴上的切平面在各坐标轴上的上任何点处的上任何点处的曲面曲面证明证明azyx 三、等量面与等高线三、等量面与等高线 等量面等量面:Czyx

    9、F),(:),(),(000的等量面方程为的等量面方程为过点过点函数函数zyxMzyxF),(),(000zyxFzyxF 等高线(等量线):等高线(等量线):CyxF),(.),(面上的投影曲线面上的投影曲线的交线在的交线在与平面与平面它表示曲面它表示曲面xoyCzyxFz .)(点的法向量点的法向量的等量面在的等量面在表示过表示过MMMF 如图,梯度为等高线上的法向如图,梯度为等高线上的法向量并指向等高线的高值方向。量并指向等高线的高值方向。oyx2),(cyxf1),(cyxfcyxf),(等高线等高线 ),(yxgradf梯度为等高线上的法向量梯度为等高线上的法向量 P答案:答案:),

    10、(),(yxFFyxF yxFFdxdy?),(),(系系处的梯度与斜率有何关处的梯度与斜率有何关上点上点等高线等高线yxCyxF 练练 习习 题题 .86,)1,1,1(632.2.85222 0523.12222222的方向导数的方向导数处沿方向处沿方向在点在点求函数求函数法向量法向量处的指向外侧的处的指向外侧的在点在点是曲面是曲面设设相切之切平面方程相切之切平面方程且与曲面且与曲面求过直线求过直线 nPzyxuPzyxnzyxzyxzyxL作业作业习题习题6-76-7:1 1(2 2)()(4 4)、)、2 2(2 2)()(3 3)()(4 4)、)、4 4、8 8.:.5.,)5,2,1(030.4.0222.32323232322222aazyxbayxzzayxbyxzyxyxz距平方和等于常数距平方和等于常数切平面在各坐标轴上截切平面在各坐标轴上截上任意一点处的上任意一点处的曲面曲面试证试证之值之值求求的平面上的平面上相切于点相切于点在与曲面在与曲面设直线设直线的切平面方程的切平面方程平行于平面平行于平面求曲面求曲面

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:多元函数微分学的几何应用课件.ppt
    链接地址:https://www.163wenku.com/p-4650950.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库