数学建模离散模型总结课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模离散模型总结课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 离散 模型 总结 课件
- 资源描述:
-
1、第八章第八章 离散模型离散模型8.1 层次分析模型层次分析模型8.2 循环比赛的名次循环比赛的名次8.3 社会经济系统的冲量过程社会经济系统的冲量过程8.4 公平的席位分配公平的席位分配8.5 存在公正的选举规则吗存在公正的选举规则吗8.6 价格指数价格指数离散模型离散模型 离散模型:离散模型:代数方程与代数方程与差分方程(第差分方程(第6章)、整数规划(第章)、整数规划(第4章)、图论、对策章)、图论、对策论、网络流、论、网络流、应用较广应用较广,是分析社会经济系统的有力工具是分析社会经济系统的有力工具.只用到代数、集合及只用到代数、集合及(少许少许)图论的知识图论的知识.8.1 层次分析模
2、型层次分析模型背背景景 日常工作、生活中的决策问题日常工作、生活中的决策问题.涉及经济、社会等方面的因素涉及经济、社会等方面的因素.作比较判断时人的主观选择起相当大作比较判断时人的主观选择起相当大 的作用,各因素的重要性难以量化的作用,各因素的重要性难以量化.Saaty于于20世纪世纪70年代提出层次分析法年代提出层次分析法 AHP(Analytic Hierarchy Process)AHP一种一种定性与定量相结合的、定性与定量相结合的、系统化、层次化系统化、层次化的分析方法的分析方法目标层目标层O(选择旅游地选择旅游地)P2黄山黄山P1桂林桂林P3北戴河北戴河准则层准则层方案层方案层C3居
3、住居住C1景色景色C2费用费用C4饮食饮食C5旅途旅途一一.层次分析法的基本步骤层次分析法的基本步骤例例.选择旅游地选择旅游地如何在如何在3 3个目的地中按照景色、个目的地中按照景色、费用、居住条件等因素选择费用、居住条件等因素选择.“选择旅游地选择旅游地”思维过程的归思维过程的归纳纳 将决策问题分为将决策问题分为3个个层次层次:目标层:目标层O,准则层,准则层C,方案层方案层P;每层有若干元素,;每层有若干元素,各层元素间的关系各层元素间的关系 用相连的直线表示用相连的直线表示.通过通过相互比较相互比较确定各准则对目标的确定各准则对目标的权重权重,及各方,及各方 案对每一准则的权重案对每一准
4、则的权重.将上述两组权重进行将上述两组权重进行综合综合,确定各方案对目标的,确定各方案对目标的 权重权重.层次分析法将层次分析法将定性分析与定量分析定性分析与定量分析结合起来结合起来完成以上步骤,给出决策问题的定量结果完成以上步骤,给出决策问题的定量结果.1135/13/11125/13/13/12/117/14/1557123342/11AijjiijnnijaaaaA1,0,)(层次分析法的基本步骤层次分析法的基本步骤成对比较阵成对比较阵和权向量和权向量 元素之间两两对比,对比采用相对尺度元素之间两两对比,对比采用相对尺度 设要比较各准则设要比较各准则C1,C2,Cn对目标对目标O的重要性
5、的重要性ijjiaCC:A成对比较阵成对比较阵A是正互反阵是正互反阵要由要由A确定确定C1,Cn对对O的权向量的权向量选选择择旅旅游游地地nnnnnnwwwwwwwwwwwwwwwwwwA21222121211171242/11A成对比较的不一致情况成对比较的不一致情况):(2/12112CCa):(43113CCa):(83223CCa 一致比较一致比较允许不一致,但要确定不一致的允许范围允许不一致,但要确定不一致的允许范围考察完全一致的情况考察完全一致的情况nwwwW,)(211 jiijwwa/令权向量),(Tnwwww21成对比较阵和权向量成对比较阵和权向量不一致不一致nnnnnwww
6、wwwwwwwwwA2112111成对比较完全一致的情况成对比较完全一致的情况nkjiaaaikjkij,21满足满足的正互反阵的正互反阵A称称一致阵一致阵,如,如 A的秩为的秩为1,A的唯一非零特征根为的唯一非零特征根为n A的任一列向量是对应于的任一列向量是对应于n 的特征向量的特征向量 A的归一化特征向量可作为权向量的归一化特征向量可作为权向量一致阵一致阵性质性质成对比较阵和权向量成对比较阵和权向量对于不一致对于不一致(但在允许范围内但在允许范围内)的成对比较阵的成对比较阵A,建议用对应于最大特征根建议用对应于最大特征根 的特征向量作为权的特征向量作为权向量向量w,即,即wAw 2 4
7、6 8比较尺度比较尺度aij Saaty等人提出等人提出19尺度尺度,即即aij 取值取值1,2,9及其互反数及其互反数1,1/2,1/9尺度尺度 1 3 5 7 9 ija相同相同 稍强稍强 强强 明显强明显强 绝对强绝对强的重要性jiCC:jiCC:aij=1,1/2,1/9的重要性与上面相反的重要性与上面相反 心理学家认为成对比较的因素不宜超过心理学家认为成对比较的因素不宜超过9个个.用用13,15,117,1p9p(p=2,3,4,5),d+0.1d+0.9(d=1,2,3,4)等等27种比较尺度对若干实例构造成对比较种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现,阵,
8、算出权向量,与实际对比发现,19尺度较优尺度较优.便于定性到定量的转化:便于定性到定量的转化:成对比较阵和权向量成对比较阵和权向量一致性检验一致性检验对对A确定不一致的允许范围确定不一致的允许范围已知:已知:n 阶一致阵的唯一非零特征根为阶一致阵的唯一非零特征根为n可证:可证:n 阶正互反阵最大特征根阶正互反阵最大特征根 n,且且 =n时为一致阵时为一致阵1nnCI定义一致性指标定义一致性指标:CI 越大,不一致越严重越大,不一致越严重RI0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 n1 234567891110为衡量为衡量CI 的大小,引
9、入的大小,引入随机一致性指标随机一致性指标 RI随机随机模拟得到模拟得到aij,形成形成A,计算,计算CI 即得即得RI.定义一致性比率定义一致性比率CR=CI/RI当当CR0.1时通过一致性检验时通过一致性检验Saaty的结果如下的结果如下“选择旅游地选择旅游地”中中准则层对目标的权准则层对目标的权向量及一致性检验向量及一致性检验1135/13/11125/13/13/12/117/14/1557123342/11A准则层对目标的准则层对目标的成对比较阵成对比较阵最大特征根最大特征根=5.073权向量权向量(特征向量特征向量)w=(0.263,0.475,0.055,0.090,0.110)
10、T018.0155073.5CI一致性指标一致性指标随机一致性指标随机一致性指标 RI=1.12(查表查表)一致性比率一致性比率CR=0.018/1.12=0.0163)个顶点的双向连通竞赛图,存在个顶点的双向连通竞赛图,存在 正整数正整数r,使邻接矩阵,使邻接矩阵A 满足满足Ar 0,A称称素阵素阵.eAAsskkk)1()(0001100011000110A排名为排名为1,2,4,3sskk)(,)(归一化后T1.4,(0.323,0.280,0.167,0.230)s用用s排名排名1234(4)1,2,3,4?素阵素阵A的最大特征根为正单的最大特征根为正单 根根,对应正特征向量,对应正特
11、征向量s,且且seAkkk lim000100100100110000001010111000111010A(1)T(4,3,3,2,2,1),s1234566支球队比赛结果支球队比赛结果T2.232,(0.238,0.164,0.231,0.113,0.150,0.104)s排名次序为排名次序为1,3,2,5,4,632,4 5排名排名 132456?(3)T(15,10,16,7,12,9),s(2)T(8,5,9,3,4,3),s(4)T(38,28,32,21,25,16)s1:4分分;2,3:3分分;4,5:2分分;6:1分分.v1能源利用量能源利用量,v2能源价格能源价格,v3能源
12、生产率能源生产率,v4环境质量环境质量,v5工业产值工业产值,v6就业机会就业机会,v7人口总数人口总数.8.3 社会经济系统的冲量过程社会经济系统的冲量过程系统的元素系统的元素图的顶点图的顶点元素间的直接影响元素间的直接影响有方向的弧有方向的弧正面影响正面影响弧旁的弧旁的+号;负面影响号;负面影响弧旁的弧旁的号号带符号的有向图带符号的有向图符号、符号、客观规律;客观规律;方针政策方针政策例例 能源利用系统的预测能源利用系统的预测+-+-+-+v2v1v3v4v6v7v5Evvvvvvajijijiij若,为若为若,0,1100000011000000010000110000000010010
13、00000010001110A带符号有向图带符号有向图G1=(V,E)的邻接矩阵的邻接矩阵AV顶点集顶点集,E弧集弧集定性模型定性模型-vivj+某时段某时段vi 增加导致增加导致下时段下时段vj 增加增加(减少减少)带符号的有向图带符号的有向图G1+-+-+-+v2v1v3v4v6v7v50000005.1100000005.100002.13.000000000100200000007.00002.18.05.00W加权有向图加权有向图G2及其邻接矩阵及其邻接矩阵W定量模型定量模型某时段某时段vi 增加增加1单位导致单位导致下时段下时段vj 增加增加wij单位单位jwivvij的特例视为
14、WAv70.311.511.51.20.8-2-2-0.7-0.5v1v2v3v4v5v6加权有向图加权有向图G2,2,1,0,2,1),1()()1(tnitptvtviiininiiijjiijjtpatptpwtp11)()1(),()1(或)1()()1(tptvtv冲量过程冲量过程(Pulse Process)研究由某元素研究由某元素vi变化引起的系统的演变过程变化引起的系统的演变过程 vi(t)vi在时段在时段t 的的值值;pi(t)vi在时段在时段t 的的改变量改变量(冲量冲量)(),(),()(),(,),(),()(2121tptptptptvtvtvtvnnjwivvij冲
15、量过程模型冲量过程模型Wtptp)()1(Atptp)()1(或或能源利用系统的预测能源利用系统的预测简单冲量过程简单冲量过程初始冲量初始冲量p(0)中中某个分量为某个分量为1,其余为,其余为0的冲量过程的冲量过程.若开始时能源利用量有突然增加,预测系统的演变若开始时能源利用量有突然增加,预测系统的演变.)0()0(pv)1()()1(tptvtvAtptp)()1(设设能源利用系统的能源利用系统的 p(t)和和v(t)-110-11-100011-10000t4p3p5p6p7p2p4v3v2v1v5v6v7v01000000100000001p231-10010-12-21-110-11-
16、11-10103-32-211-1简单冲量过程简单冲量过程S的稳定性的稳定性 任意时段任意时段S的各元素的值和冲量是否为有限的各元素的值和冲量是否为有限(稳定稳定)?S不稳定时如何改变可以控制的关系使之变为稳定不稳定时如何改变可以控制的关系使之变为稳定?S冲量稳定冲量稳定对任意对任意 i,t,|pi(t)|有界有界 S值稳定值稳定对任意对任意 i,t,|vi(t)|有界有界值稳定值稳定冲量稳定冲量稳定)1()()1(tptvtvWtptp)()1(tWptp)0()(S的稳定性取决于的稳定性取决于W的特征根的特征根记记W的的非零非零特征根为特征根为 S冲量稳定冲量稳定|1 S冲量稳定冲量稳定|
17、1且均为单根且均为单根 S值稳定值稳定 S冲量稳定冲量稳定且且 不等于不等于10000001100000001000011000000001001000000010001110A对于能源利用系统的邻接矩阵对于能源利用系统的邻接矩阵A2532()(1)f特征多项式特征多项式76)2(,2)1(ff)2,1(能源利用系统存在能源利用系统存在冲量冲量不稳定不稳定的简单冲量过程的简单冲量过程简单冲量过程简单冲量过程S的稳定性的稳定性 简单冲量过程的稳定性简单冲量过程的稳定性 改进的玫瑰形图改进的玫瑰形图S*带符号的带符号的有向图双向连通,且存在一个有向图双向连通,且存在一个位于所有回路上的中心顶点位于
18、所有回路上的中心顶点.回路长度回路长度 构成回路的边数构成回路的边数.回路符号回路符号 构成回路的各有向边符号构成回路的各有向边符号+1或或-1之乘积之乘积.ak长度为长度为k的回路符号和的回路符号和r使使ak不等于不等于0的最大整数的最大整数 S*冲量稳定冲量稳定 )1,2,1(rkaaar-krk,1ra 若若S*冲量稳定,则冲量稳定,则S*值稳定值稳定 1r1kka+-+-+-+v2v1v3v4v6v7v5简单冲量过程简单冲量过程S*的稳定性的稳定性 a1=0,a2=(-1)v1v2 (-1)v2v1=1a3=(+1)v1v3v5v1+(-1)v1v4v7v1+(+1)v1v3v2v1=
19、1,a4=0,a5=1,r=5 S*冲量稳定冲量稳定 (1,2,1)krr-kaa akr,1ra352aaa(-1)v1v2(+1)v1v2(由鼓励利用变为限制利用由鼓励利用变为限制利用)a2=-1+S*冲量不稳定冲量不稳定)1()(2352fA的的特征多项式特征多项式0,0,1,i,(13i)1 且为单根S*冲量稳定冲量稳定 S*冲量稳定冲量稳定|1且均为单根且均为单根v1利用量利用量,v2价格价格v7+-+-+-+v2v1v3v4v6v5 若S*冲量稳定,则冲量稳定,则S*值稳定值稳定 1r1kka1,0,1,1,0,54321aaaaa S*冲量稳定冲量稳定 ),(121rkaaar-
20、krk,1rav3能源生产率能源生产率 v5工业产值工业产值1,1,5353aaaa(-1)v3v5 违反客观规律违反客观规律S*值不稳定值不稳定S*值值稳定稳定(+1)v3v5(-1)v3v5能源利用系统的值能源利用系统的值不应稳定?不应稳定?-+-+-+v2v1v3v4v6v7v5+简单冲量过程简单冲量过程S*的稳定性的稳定性 社会经济系统的冲量过程社会经济系统的冲量过程 定性与定量相结合的定性与定量相结合的系统分析系统分析方法方法,适合社会经济适合社会经济 领域中复杂大系统的宏观研究领域中复杂大系统的宏观研究.解决问题的解决问题的关键关键是确定研究的对象及其范围是确定研究的对象及其范围(
21、系统系统 的边界的边界),),以及各因素间的相互关系以及各因素间的相互关系.以能源系统为例介绍以能源系统为例介绍有向图有向图和和冲量过程冲量过程的建模方法的建模方法.冲量过程模型及预测是简单的冲量过程模型及预测是简单的,但是但是稳定性稳定性判断及判断及 其改进比较复杂其改进比较复杂.8.4 公平的席位分配公平的席位分配每每10年,美国联邦政府进行一次全国人口普查年,美国联邦政府进行一次全国人口普查,各州在各州在联邦众议院的代表名额也据此重新确定联邦众议院的代表名额也据此重新确定.公平的席位分配问题(公平的席位分配问题(apportionment)2000年人口普查后,犹他州向联邦政府提出控诉,
22、说年人口普查后,犹他州向联邦政府提出控诉,说分配给北卡罗莱纳州的名额应该是他们的分配给北卡罗莱纳州的名额应该是他们的.问题的数学本质是什么?问题的数学本质是什么?事实上,过去事实上,过去200年来,美国国会在名额分配上打过多年来,美国国会在名额分配上打过多起法律官司,曾有过长期争论并使用过起法律官司,曾有过长期争论并使用过4种分配方案种分配方案.一个简单例子一个简单例子系别系别 学生学生 比例比例 20席的分配席的分配 人数人数 (%)比例比例 结果结果 甲甲 103 51.5 乙乙 63 31.5 丙丙 34 17.0总和总和 200 100.0 20.0 2021席的分配席的分配 比例比例
23、 结果结果10.815 6.615 3.570 21.000 21问问题题三个系学生共三个系学生共200名名(甲甲100,乙,乙60,丙,丙40),代表会,代表会议共议共20席,按比例分配,三个系分别为席,按比例分配,三个系分别为10,6,4席席.因学生转系因学生转系,三系人数为三系人数为103,63,34,如何分配如何分配20席席?若代表会议增加若代表会议增加1席,如何分配席,如何分配21席席?比比例例加加惯惯例例对对丙丙系系公公平平吗?吗?系别系别 学生学生 比例比例 20席的分配席的分配 人数人数 (%)比例比例 结果结果 甲甲 103 51.5 10.3 乙乙 63 31.5 6.3
展开阅读全文