书签 分享 收藏 举报 版权申诉 / 23
上传文档赚钱

类型第三节格林公式及其应用2课件.ppt

  • 上传人(卖家):晟晟文业
  • 文档编号:4643808
  • 上传时间:2022-12-28
  • 格式:PPT
  • 页数:23
  • 大小:534KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第三节格林公式及其应用2课件.ppt》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    三节 格林 公式 及其 应用 课件
    资源描述:

    1、第三节第三节 格林公式及其应用格林公式及其应用(2)(2)一、曲线积分与路径无关的定义一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件二、曲线积分与路径无关的条件三、三、二元函数的全微分求积二元函数的全微分求积四四、小结、小结yxo例例.计算,dd22yxxyxL其中L为(1)抛物线 ;10:,:2xxyL(2)抛物线 ;10:,:2yyxL(3)有向折线.:ABOAL解解:(1)原式22xxxx d4103(2)原式yyy222yy d5104(3)原式yxxyxOAdd22102d)002(xxx1)0,1(A)1,1(B2xy2xy 10(xxxd)2210(yyd)4yxxy

    2、xABdd2210d)102(yy11G Gy yx xo o 1LQdyPdx一、曲线积分与路径无关的定义一、曲线积分与路径无关的定义:2LQdyPdx1L2LB BA A如果在区域如果在区域G G内有内有 如果与路径无关,再注意一下曲线积分的方向,可把上式写成121200LLLLPdxQdyPdxQdyPdxQdy DL1ABL2L2xy12LLPdxQdyPdxQdy 定理定理2.设D 是单连通域,),(),(yxQyxP在D 内具有一阶连续偏导数,(1)沿D 中任意光滑闭曲线 L,有.0ddLyQxP(2)对D 中任一分段光滑曲线 L,曲线积分(3)yQxPdd),(yxuyQxPyx

    3、udd),(d(4)在 D 内每一点都有.xQyPLyQxPdd与路径无关,只与起止点有关.函数则以下四个条件等价:在 D 内是某一函数的全微分,即 二、平面上曲线积分与路径无关的等价条件二、平面上曲线积分与路径无关的等价条件说明说明:积分与路径无关时,曲线积分可记为 证明证明(1)(2)设21,LL21ddddLLyQxPyQxP1ddLyQxP2ddLP xQ y21ddLLyQxP0AB1L2L2ddLyQxP1ddLyQxP为D 内任意两条由A 到B 的有向分段光滑曲线,则(根据条件(1)BAyQxPddAByQxPdd证明证明(2)(3)在D内取定点),(00yxA因曲线积分),()

    4、,(00dd),(yxyxyQxPyxu(,)(,)xuu xx yu x y则),(yxPxuxuxx0lim),(lim0yxxPx),(),(ddyxxyxyQxP),(),(dyxxyxxP(,),01P xx yx同理可证yu),(yxQ因此有yQxPuddd和任一点B(x,y),与路径无关,),(yxxC),(yxB),(00yxA有函数 证明证明(3)(4)设存在函数 u(x,y)使得yQxPuddd则),(),(yxQyuyxPxuP,Q 在 D 内具有连续的偏导数,xyuyxu22所以从而在D内每一点都有xQyPxyuxQyxuyP22,证明证明(4)(1)设L为D中任一分段

    5、光滑闭曲线,DD(如图),上因此在DxQyP利用格林公式格林公式,得yxxQxQyQxPLDdd)(ddDDL0所围区域为证毕yx说明说明:根据定理2,若在某区域内,PQyx则2)求曲线积分时,可利用格林公式简化计算,3)可用积分法求d u=P dx+Q dy在域 D 内的原函数:Dyx),(00及动点,),(DyxyyxQxyxPyxuyxyxd),(d),(),(),(),(00 xxxyxP0d),(0或yyyyxQyxu0d),(),(00y0 x则原函数为yyyyxQ0d),(xxxyxP0d),(若积分路径不是闭曲线,可添加辅助线;取定点1)计算曲线积分时,可选择方便的积分路径;x

    6、xyxyyP2)2(2 xyxxxQ2)(42 解解:.1523 yA xoL例例7.计算,d)(d)3(22yxyxyxL其中L 为上半24xxy从 O(0,0)到 A(4,0).解解:为了使用格林公式,添加辅助线段,()AO 补边法D它与L 所围原式yxyxyxAOLd)(d)3(22Dyxdd4OAyxyxyxd)(d)3(22402dxx圆周区域为D,则3864例例8.验证在xoy平面内yyxxyxdd22是某个函数的全微分,并求出这个函数。证证:设,22yxQyxP则xQyxyP2由定理2 可知,存在函数 u(x,y)使yyxxyxuddd22),()0,0(22dd),(yxyyx

    7、xyxyxu。)0,0(。),(yx)0,(xxxx0d0yyxyd02yyxyd022221yx例例9.验证22ddyxxyyx在右半平面(x 0)内存在原函数,并求出它.证证:令2222,yxxQyxyP则)0()(22222xyQyxxyxP由定理定理 2 可知存在原函数),()0,1(22dd),(yxyxxyyxyxuxx1d0)0(arctanxxyoxyyyxyx022d)0,(x)0,1(),(yxoxy)0,(x)0,1(),(yx),()0,1(22dd),(yxyxxyyxyxuyyy021dyxyyarctan1arctanarctanyxarctan2xyxxy122

    8、d或),1(y)0(arctanxxy重要结论重要结论:dd(,)LBP xQ yu x yA函数与路径无关,只与起止点有关,记起点),(),(yxQyxP具有一阶,连续偏导数,若D 中任一分段光滑曲线 L,曲线积分 LyQxPdd为A,止点为B,则(,)u x y 有,在 D 内存在某一函数设D 是单连通域,xxyxyyP2)2(2 xyxxxQ2)(42 解一解一:.1523 解法二:解法二:内容小结内容小结1.格林公式LyQxPdd2.等价条件在 D 内与路径无关.yPxQ在 D 内有yQxPudddyxyPxQDddLyQxPdd对 D 内任意闭曲线 L 有0ddLyQxP在 D 内有

    9、设 P,Q 在 D 内具有一阶连续偏导数,则有思考与练习思考与练习1.设,4:,1:222412yxlyxL且都取正向,问下列计算是否正确?Lyxxyyx22d4d)1(lyxxyyx22d4dlxyyxd4d41Do2y1x2LlDd5415Lyxxyyx22dd)2(lyxxyyx22ddlxyyxdd41Dd2412提示提示:时022 yxyPxQ)1(yPxQ)2(2.设,)56,4(),(grad42234yyxxyxyxu).,(yxu求提示提示:),(dyxuxxyxd)4(34yyyxd)56(422),(yxuyox),(yx)0,(xxxxd04yyyxyd)56(0422

    10、C551x322yxCy 5xxyxd)4(34yyyxd)56(422),()0,0(yxC作业作业P213 1(1);2(1)(2)3;4(3);5(1),(4);6(2),(5)CCCDyxoaaC 备用题备用题 1.设 C 为沿yxaxyxaxxayCd)ln(2d22222222ayx从点),0(a依逆时针),0(a的半圆,计算解解:添加辅助线如图,利用格林公式.原式=321aaayayd)ln2(D222xaya222xayyxddC到点D2.质点M 沿着以AB为直径的半圆,从 A(1,2)运动到Dyxdd2点B(3,4),到原点的距离,解解:由图知 故所求功为AByxxyddABBAABxxxd)1(3122锐角,其方向垂直于OM,且与y 轴正向夹角为AB)dd(yxxy)1(21334xyAB的方程F求变力 F 对质点M 所作的功.(90考研),),(xyFF 的大小等于点 M 在此过程中受力 F 作用,sFWd),(yxMBAyxo

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第三节格林公式及其应用2课件.ppt
    链接地址:https://www.163wenku.com/p-4643808.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库